Survey on path and cycle embedding in some networks

Jun-Ming XU, Meijie MA

PDF(356 KB)
PDF(356 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (2) : 217-252. DOI: 10.1007/s11464-009-0017-5
SURVEY ARTICLE
SURVEY ARTICLE

Survey on path and cycle embedding in some networks

Author information +
History +

Abstract

To find a cycle (resp. path) of a given length in a graph is the cycle (resp. path) embedding problem. To find cycles of all lengths from its girth to its order in a graph is the pancyclic problem. A stronger concept than the pancylicity is the panconnectivity. A graph of order n is said to be panconnected if for any pair of different vertices x and y with distance d there exist xy-paths of every length from d to n. The pancyclicity or the panconnectivity is an important property to determine if the topology of a network is suitable for some applications where mapping cycles or paths of any length into the topology of the network is required. The pancyclicity and the panconnectivity of interconnection networks have attracted much research interest in recent years. A large amount of related work appeared in the literature, with some repetitions. The purpose of this paper is to give a survey of the results related to these topics for the hypercube and some hypercube-like networks.

Keywords

Cycle / path / pancyclicity / hamiltonicity / panconnectivity / faulttolerance / hypercube-like network / embedding

Cite this article

Download citation ▾
Jun-Ming XU, Meijie MA. Survey on path and cycle embedding in some networks. Front Math Chin, 2009, 4(2): 217‒252 https://doi.org/10.1007/s11464-009-0017-5

References

[1]
Akers S B, Harel D, Krishnamurthy B. The star graph, An attractive alternative to the n-cube. In: Sahni S, ed. Proceedings of the 1987 International Conference on Parallel Processing, August 17-21, 1987. University Park: Pennsylvania State Univ Press, 1987, 393-400
[2]
Akers S B, Krishnamurthy B. A group-theoretic model for symmetric interconnection networks. In: Proceedings of the 1986 International Conference on Parallel Processing. 1986, 216-223
[3]
Akers S B, Krisnamurthy B. A group theoretic model for symmetric interconnection networks. IEEE Transactions on Computers, 1989, 38(4): 555-566
CrossRef Google scholar
[4]
Akl S G. Parallel Computation: Models and Methods. Upper Saddle River: Prentice-Hall, 1997
[5]
Alavi Y, Williamson J E. Panconnected graphs. Studia Scientiarum Mathematicarum Hungarica, 1975, 10(1-2): 19-22
[6]
Alspach B, Bermond J C, Sotteau D. Decomposition into cycles I. Hamiltonian decomposition. Technical Report 87-12. Simon Fraser University, 1987
[7]
Alspach B, Hare D. Edge-pancyclic block-intersection graphs. Discrete Mathematics, 1991, 97(1-3): 17-24
CrossRef Google scholar
[8]
Araki T, Kikuchi Y. Hamiltonian laceability of bubble-sort graphs with edge faults. Information Sciences, 2007, 177(13): 2679-2691
CrossRef Google scholar
[9]
Araki T, Shibata Y. Pancyclicity of recursive circulant graphs. Information Processing Letters, 2002, 81: 187-190
CrossRef Google scholar
[10]
Ashir Y A, Stewart T A. On embedding cycles in k-ary n-cubes. Parallel Processing Letters, 1997, 7(1): 49-55
CrossRef Google scholar
[11]
Ashir Y A, Stewart I A. Fault-tolerant embedding of Hamiltonian circuits in k-ary n-cube. SIAM Journal on Discrete Mathematics, 2002, 15(3): 317-328
CrossRef Google scholar
[12]
Bettayeb S. On the k-ary Hypercube. Theoretical Computer Science, 1995, 140: 333-339
CrossRef Google scholar
[13]
Bondy J A. Pancyclic graphs. I. Journal of Combinatorial Theory, 1971, 11: 80-84
CrossRef Google scholar
[14]
Bose B, Broeg B, Kwon Y, Ashir Y. Lee distance and topological properties of k-ary n-cubes. IEEE Transactions on Computers, 1995, 44: 1021-1030
CrossRef Google scholar
[15]
Chan M Y, Lee S J. On the existence of Hamiltonian circuits in faulty hypercubes. SIAM Journal on Discrete Mathematics, 1991, 4: 511-527
CrossRef Google scholar
[16]
Chan M Y, Lee S J. Distributed fault-tolerant embedding of rings in hypercubes. Journal of Parallel and Distributed Computing, 1991, 11: 63-71
CrossRef Google scholar
[17]
Chang C-H, Lin C-K, Huang H-M, Hsu L-H. The super laceability of the hypercubes. Information Processing Letters, 2004, 92(1): 15-21
CrossRef Google scholar
[18]
Chang C-P, Sung T-Y, Hsu L-H. A new shortest path routing algorithm and embedding cycles of crossed cube. Parallel Architectures, Algorithms, and Networks, 1997. (I-SPAN’97) Proceedings. Third International Symposium on 18-20 Dec 1997. 125-131
[19]
Chang C-P, Wang J-N, Hsu L-H. Topological properties of twisted cube. Information Science, 1999, 113: 147-167
CrossRef Google scholar
[20]
Chang J-M, Yang J-S,Wang Y-L, Cheng Y. Panconnectivity, fault-tolerant hamiltonicity and hamiltonian-connectivity in alternating group graphs. Networks, 2004, 44(4): 302-310
CrossRef Google scholar
[21]
Chang J-M, Yang J-S. Fault-tolerant cycle embedding in alternating group graphs. Applied Mathematics and Computation, 2008, 197(2): 760-767
CrossRef Google scholar
[22]
Chang Q-Y, Ma M-J, Xu J-M. Fault-tolerant pancyclicity of locally twisted cubes. Journal of University of Science and Technology of China, 2006, 36(6): 607-610, 673 (in Chinese)
[23]
Chang Q-Y, Ma M-J, Xu J-M. Fault-tolerant pancyclicity of twisted cubes. Operation Research and Management Science, 2007, 16(1): 52-57 (in Chinese)
[24]
Chen G H, Fu J S, Fang J F. Hypercomplete: a pancylic recursive topology for large-scale distributed multicomputer systems. Networks, 2000, 35(1): 56-69
CrossRef Google scholar
[25]
Chen G H, Hwang S C. Cycle in butterfly graphs. Networks, 2000, 35(2): 161-171
CrossRef Google scholar
[26]
Chen M Y, Shin K G. Processor allocation in an n-cube multiprocessor using gray codes. IEEE Transactions on Computers, 1987, 36: 1396-1407
[27]
Chen X-B. Cycles passing through prescribed edges in a hypercube with some faulty edges. Information Processing Letters, 2007, 104(6): 211-215
CrossRef Google scholar
[28]
Chen X-B. Some results on topological properties of folded hypercubes. Information Processing Letters, DOI: 10.1016/j.ipl.2008.12.005
CrossRef Google scholar
[29]
Chen Y-C, Tsai C-H, Hsu L-H, Tan J J M. On some super fault-tolerant Hamiltonian graphs. Applied Mathematics and Computation, 2004, 148: 729-741
CrossRef Google scholar
[30]
Chen Y-Y, Duh D-R, Ye T-L, Fu J-S. Weak-vertex-pancyclicity of (n, k)-star graphs. Theoretical Computer Science, 2008, 396(3): 191-199
CrossRef Google scholar
[31]
Cheng E, Lipman M. Fault tolerant routing in split-stars and alternating group graphs. Congressus Numerantium, 1999, 139: 21-32
[32]
Cheng E, Lipman M-J. Vulnerability issues of star graphs, alternating group graphs and split-stars: strength and toughness. Discrete Applied Mathematics, 2002, 118(3): 163-179
CrossRef Google scholar
[33]
Cheng E, Lipman M-J, Park H. Super connectivity of star graphs, alternating group graphs and split-stars. Ars Combinatoria, 2001, 59: 107-116
[34]
Chiang W K, Chen R J. The (n, k)-star graphs: A generalized star graph. Information Processing Letters, 1995, 56: 259-264
CrossRef Google scholar
[35]
Chiang W K, Chen R J. On the arrangement graph. Information Processing Letters, 1998, 66: 215-219
CrossRef Google scholar
[36]
Choudum S A, Sunitha V. Wide-diameter of augmented cubes. Technical Report. Department of Mathematics, Indian Institute of Technology Madras, Chennai, November 2000
[37]
Choudum S A, Sunitha V. Automorphisms of augmented cubes. Technical Report. Department of Mathematics, Indian Institute of Technology Madras, Chennai, March 2001
[38]
Choudum S A, Sunitha V. Augmented cubes. Networks, 2002, 40(2): 71-84
CrossRef Google scholar
[39]
Cull P, Larson S M. The Möbius cubes. IEEE Transactions on Computers, 1995, 44(5): 647-659
CrossRef Google scholar
[40]
Cull P, Larson S M. On generalized twisted cubes. Information Processing Letters, 1995, 55: 53-55
CrossRef Google scholar
[41]
Day K, Tripathi A. Arrangement graphs: A class of generalized star graphs. Information Processing Letters, 1992, 42(5): 235-241
CrossRef Google scholar
[42]
Day K, Tripathi A. Embedding of cycles in arrangement graphs. IEEE Transactions on Computers, 1993, 42(8): 1002-1006
CrossRef Google scholar
[43]
Du Z-Z, Jing J, Ma M-J, Xu J-M. Cycle embedding in hypercubes with faulty vertices and edges. Journal of University of Science and Technology of China, 2008, 38(9): 1020-1023
[44]
Efe K. A variation on the hypercube with lower diameter. IEEE Transactions on Computers, 1991, 40(11): 1312-1316
CrossRef Google scholar
[45]
El-Amawy A, Latifi S. Properties and performance of folded hypercubes. IEEE Transactions on Parallel and Distributed Systems, 1991, 2(3): 31-42
CrossRef Google scholar
[46]
Esfahanian A H. Generalized measures of fault tolerance with application to n-cube networks. IEEE Transactions on Computers, 1989, 38(11): 1586-1591
CrossRef Google scholar
[47]
Fan J. Hamilton-connectivity and cycle-embedding of the M�obius cubes. Information Processing Letters, 2002, 82: 113-117
CrossRef Google scholar
[48]
Fan J, Jia X, Lin X. Complete path embeddings in crossed cubes. Information Sciences, 2006, 176(22): 3332-3346
CrossRef Google scholar
[49]
Fan J, Lin X, Jia X. Node-pancyclicity and edge-pancyclicity of crossed cubes. Information Processing Letters, 2005, 93(3): 133-138
CrossRef Google scholar
[50]
Fan J, Lin X, Jia X. Optimal path embedding in crossed cubes. IEEE Transactions on Parallel and Distributed Systems, 2005, 16(12): 1190-1200
CrossRef Google scholar
[51]
Fan J, Lin X, Jia X. Optimal fault-tolerant embedding of paths in twisted cubes. Journal of Parallel and Distributed Computing, 2007, 67(2): 205-214
CrossRef Google scholar
[52]
Fan J, Lin X, Jia X, Lau R W H. Edge-pancyclicity of twisted cubes. Lecture Notes in Computer Science, 2005, 3827: 1090-1099
CrossRef Google scholar
[53]
Fu J-S. Fault-tolerant cycle embedding in the hypercube. Parallel Computing, 2003, 29: 821-832
CrossRef Google scholar
[54]
Fu J-S. Longest fault-free paths in hypercubes with vertex faults. Information Sciences, 2006, 176: 759-771
CrossRef Google scholar
[55]
Fu J-S. Conditional fault-tolerant hamiltonicity of star graphs. Parallel Computing, 2007, 33: 488-496
CrossRef Google scholar
[56]
Fu J-S. Fault-free cycles in folded hypercubes with more faulty elements. Information Processing Letters, 2008, 108(5): 261-263
CrossRef Google scholar
[57]
Fu J-S. Fault-free hamiltonian cycles in twisted cubes with conditional link faults. Theoretical Computer Science, 2008, 407(1-3): 318-329
CrossRef Google scholar
[58]
Germa A, Heydemann M C, Sotteau D. Cycles in the cube-connected cycles graphs. Discrete Applied Mathematics, 1998, 83: 135-155
CrossRef Google scholar
[59]
Harary F, Hayes J P, Wu H J. A survey of the theory of hypercube graphs. Computers and Mathematics with Applications, 1988, 15(4): 277-289
CrossRef Google scholar
[60]
Harary F, Lewinter M. Hypercubes and other recursively defined Hamilton laceable graphs. Congressus Numerantium, 1987, 60: 81-84
[61]
Heydari M H, Sudborough I H. On the diameter of the pancake network. Journal of Algorithms, 1997, 25: 67-94
CrossRef Google scholar
[62]
Hilbers P A J, Koopman M R J, van de Snepscheut J L A. The twisted cubes. Lecture Notes in Computer Science, 1987, 258-259: 152-159
[63]
Hobbs A. The square of a block is vertex pancyclic. Journal of Combinatorical Theory, B, 1976, 20(1): 1-4
[64]
Hsieh S-Y. Embedding longest fault-free paths onto star graphs with more vertex faults. Theoretical Computer Science, 2005, 337(1-3): 370-378
CrossRef Google scholar
[65]
Hsieh S-Y. Fault-tolerant cycle embedding in the hypercube with more both faulty vertices and faulty edges. Parallel Computing, 2006, 32(1): 84-91
CrossRef Google scholar
[66]
Hsieh S-Y. Some edge-fault-tolerant properties of the folded hypercube. Networks, 2008, 52(2): 92-101
CrossRef Google scholar
[67]
Hsieh S-Y. A note on cycle embedding in folded hypercubes with faulty elements. Information Processing Letters, 2008, 108(2): 81
CrossRef Google scholar
[68]
Hsieh S-Y, Chang N-W. Hamiltonian path embedding and pancyclicity on the Möbius cube with faulty nodes and faulty edges. IEEE Transactions on Computers, 2006, 55(7): 854-863
CrossRef Google scholar
[69]
Hsieh S-Y, Chen C-H. Pancyclicity on Möbius cubes with maximal edge faults. Parallel Computing, 2004, 30(3): 407-421
CrossRef Google scholar
[70]
Hsieh S-Y, Chen G-H, Ho C-W. Fault-free hamiltonian cycles in faulty arrangement graphs. IEEE Trans Parallel and Distributed Systems, 1999, 10(3): 223-237
CrossRef Google scholar
[71]
Hsieh S-Y, Chen G-H, Ho C-W. Hamiltonian-laceability of star graphs. Networks, 2000, 36(4): 225-232
CrossRef Google scholar
[72]
Hsieh S-Y, Chen G-H, Ho C-W. Longest fault-free paths in star graphs with vertex faults. Theoretical Computer Science, 2001, 262: 215-227
CrossRef Google scholar
[73]
Hsieh S-Y, Chen G-H, Ho C-W. Longest fault-free paths in star graphs with edge faults. IEEE Transactions on Computers, 2001, 50(9): 960-971
CrossRef Google scholar
[74]
Hsieh S-Y, Kuo C-N. 1-vertex-Hamiltonian-laceability of hypercubes with maximal edge faults. Journal of Interconnection Networks, 2005, 6(4): 407-415
CrossRef Google scholar
[75]
Hsieh S-Y, Kuo C-N. Hamilton-connectivity and strongly Hamiltonian-laceability of folded hypercubes. Computers and Mathematics with Applications, 2007, 53(7): 1040-1044
CrossRef Google scholar
[76]
Hsieh S-Y, Lee C-W. Conditional edge-fault hamiltonicity of matching composition networks. IEEE Transactions on Parallel and Distributed Systems, DOI: 10.1109/TPDS.2008.123
CrossRef Google scholar
[77]
Hsieh S-Y, Lin T J. Embedding cycles and paths in a k-ary n-cube. In: Proceedings of the 13th International Conference on Parallel and Distributed Systems (ICPADS). IEEE Computer Society, 2007, 1-7
[78]
Hsieh S-Y, Lin T-J. Panconnectivity and edge-pancyclicity of k-ary n-cubes. Networks, DOI: 10.1002/net.20290
CrossRef Google scholar
[79]
Hsieh S-Y, Lin T J, Huang H L. Panconnectivity and edge-pancyclicity of 3-ary n-cubes. Journal of Supercomputing, 2007, 42: 225-233
CrossRef Google scholar
[80]
Hsieh S-Y, Shen T-H. Edge-bipancyclicity of a hypercube with faulty vertices and edges. Discrete Applied Mathematics, 2008, 156(10): 1802-1808
CrossRef Google scholar
[81]
Hsieh S-Y, Shiu J-Y. Cycle embedding of augmented cubes. Applied Mathematics and Computation, 2007, 191: 314-319
CrossRef Google scholar
[82]
Hsieh S-Y, Wu C-D. Optimal fault-tolerant hamiltonicity of star graphs with conditional edge faults. Journal of Supercomputing, DOI: 10.1007/s11227-008-0242-9
CrossRef Google scholar
[83]
Hsu H-C, Chiang L-C, Tan J J M, Hsu L-H. Fault hamiltonicity of augmented cubes. Parallel Computing, 2005, 31(1): 131-145
CrossRef Google scholar
[84]
Hsu H-C, Hsieh Y-L, Tan J J M, Hsu L-H. Fault hamiltonicity and fault hamiltonian connectivity of the (n, k)-star graphs. Networks, 2003, 42(4): 189-201
CrossRef Google scholar
[85]
Hsu H-C, Li T-K, Tan J J M, Hsu L-H. Fault hamiltonicity and fault hamiltonian connectivity of the arrangement graphs. IEEE Transactions on Computers, 2004, 53(1): 39-52
CrossRef Google scholar
[86]
Hu K-S, Yeoh S-S, Chen C-Y, Hsu L-H. Node-pancyclicity and edge-pancyclicity of hypercube variants. Information Processing Letters, 2007, 102(1): 1-7
CrossRef Google scholar
[87]
Huang J, Xu J-M. Multiply-twisted hypercube with four or less dimensions is vertex-transitive. Chinese Quarterly Journal of Mathematics, 2005, 20(4): 430-434
[88]
Huang K, Wu J. Area efficient layout of balanced hypercubes. Int’1 J High Speed Electronics and Systems, 1995, 6(4): 631-646
[89]
Huang S-C, Chen C-H. Cycles in butterfly graphs. Networks, 2000, 35: 1-11
[90]
Huang W-T, Chen W-K, Chen C-H. Pancyclicity of M¨obius cubes. In: Proceedings of the Ninth international Conference on Parallel and Distributed Systems (ICPADS’02) on 17-20 Dec 2002. 591-596
[91]
Huang W T, Chuang Y C, Tan J J M, Hsu L H. Fault-free Hamiltonian cycle in faulty Möbius cubes. Computación y Systemas, 2000, 4(2): 106-114
[92]
Huang W T, Chuang Y C, Tan J J M, Hsu L H. On the fault-tolerant hamiltonicity of faulty crosses cubes. IEICE Trans on Fundamentals, 2002, E85-A(6): 1359-1370
[93]
Huang W T, Tan J J M, Huang C N, Hsu L H. Fault-tolerant hamiltonicity of twisted cubes. J Parallel and Distributed Computing, 2002, 62: 591-604
CrossRef Google scholar
[94]
Hung C-N, Hsu H-C, Liang K-Y, Hsu L-H. Ring embedding in faulty pancake graphs. Information Processing Letters, 2003, 86: 271-275
CrossRef Google scholar
[95]
Hung H-S, Fu J-S, Chen G-H. Fault-free Hamiltonian cycles in crossed cubes with conditional link faults. Information Sciences, 2007, 177(24): 5664-5674
CrossRef Google scholar
[96]
Jing J, Du Z-Z, Ma M-J, Xu J-M. Edge-fault-tolerant bipanconnectivity of hypercubes. Journal of University of Science and Technology of China, 2008, 38(9): 1017-1019
[97]
Jwo J S, Lakshmivarahan S, Dhall S K. Embedding of cycles and grids in star graphs. J Circuits Syst Computers, 1991, 1: 43-74
CrossRef Google scholar
[98]
Jwo J S, Lakshmivarahan S, Dhall S K. A new class of interconnection networks based on the alternating group. Networks, 1993, 33: 315-326
CrossRef Google scholar
[99]
Kanevsky A, Feng C. On the embedding of cycles in pancake graphs. Parallel Computing, 1995, 21: 923-936
CrossRef Google scholar
[100]
Kikuchi Y, Araki T. Edge-bipancyclicity and edge-fault-tolerant bipancyclicity of bubble-sort graphs. Information Processing Letters, 2006, 100(2): 52-59
CrossRef Google scholar
[101]
Kim H-C, Park J-H. Fault hamiltonicity of two-dimensional torus networks. In: Proceedings of the Workshop on Algorithms and Computation WAAC’00, Tokyo, Japan. 2000, 110-117
[102]
Kueng T-L, Liang T, Hsu L-H, Tan J J M. Long paths in hypercubes with conditional node-faults. Information Sciences, 2009, 179(5): 667-681
CrossRef Google scholar
[103]
Kulasinghe P, Bettayeb S. Multiply-twisted hypercube with five of more dimensions is not vertex-transitive. Information Processing Letters, 1995, 53: 33-36
CrossRef Google scholar
[104]
Latifi S, Zheng S, Bagherzadeh N. Optimal ring embedding in hypercubes with faulty links. In: Proc Fault-Tolerant Computing Symp. 1992, 178-184
[105]
Leighton F T. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. San Mateo: Morgan Kaufman, 1992
[106]
Lewinter M, Widulski W. Hyper-Hamilton laceable and caterpillar-spannable product graphs. Computers and Mathematics with Applications, 1997, 34(1): 99-104
CrossRef Google scholar
[107]
Leu Y-R, Kuo S Y. Distributed fault-tolerant ring embedding and reconfiguration in hypercubes. IEEE Transactions on Computers, 1999, 48(1): 81-88
CrossRef Google scholar
[108]
Li T-K. Cycle embedding in star graphs with edge faults. Applied Mathematics and Computation, 2005, 167(2): 891-900
CrossRef Google scholar
[109]
Li T-K, Tan J J M, Hsu L-H. Hyper hamiltonian laceability on edge fault star graph. Information Sciences, 2004, 165(1-2): 59-71
CrossRef Google scholar
[110]
Li T K, Tsai C H, Tan J J M, Hsu L H. Bipannectivity and edge-fault-tolerant bipancyclicity of hypercubes. Information Processing Letters, 2003, 87(2): 107-110
CrossRef Google scholar
[111]
Lin C-K, Huang H-M, Hsu L-H. The super connectivity of the pancake graphs and the super laceability of the star graphs. Theoretical Computer Science, 2005, 339(2-3): 257-271
CrossRef Google scholar
[112]
Lo R S, Chen G H. Embedding hamiltonian path in faulty arrangement graphs with the backtracking method. IEEE Trans Parallel and Distributed Systems, 2001, 12(2): 209-222
CrossRef Google scholar
[113]
Ma M-J, Liu G-Z, Pan X-F. Path embedding in faulty hypercubes. Applied Mathematics and Computation, 2007, 192(1): 233-238
CrossRef Google scholar
[114]
Ma M-J, Liu G-Z, Xu J-M. Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes. Parallel Computing, 2007, 33(1): 36-42
CrossRef Google scholar
[115]
Ma M-J, Liu G-Z, Xu J-M. Fault-tolerant embedding of paths in crossed cubes. Theoretical Computer Science, 2008, 407(1-3): 110-116
CrossRef Google scholar
[116]
Ma M-J, Xu J-M. Edge-pancyclicity of crossed cubes. Journal of University of Science and Technology of China, 2005, 35(3): 329-333
[117]
Ma M-J, Xu J-M. Panconnectivity of locally twisted cubes. Applied Mathematics Letters, 2006, 19(7): 681-685
CrossRef Google scholar
[118]
Ma M-J, Xu J-M. Weak edge-pancyclicity of locally twisted cubes. Ars Combinatoria, 2008, 89: 89-94
[119]
Ma M-J, Xu J-M. Transitivity and panconnectivity of folded hypercubes. Ars Combinatoria (to appear)
[120]
Ma M-J, Xu J-M, Du Z-Z. Edge-fault-tolerant hamiltonicity of folded hypercubes. Journal of University of Science and Technology of China, 2006, 36(3): 244-248
[121]
Mitchem J, Schmeichel E. Pancyclic and bipancyclic graphs—a survey. In: Proc First Colorado Symp on Graphs and Applications, Boulder, CO, 1982. New York: Wiley-Interscience, 1985, 271-278
[122]
Ore O. Hamilton connected graphs. Journal de Math' ematiques Pures et Appliqu'ees, 1963, 42(9): 21-27
[123]
Park C D, Chwa K Y. Hamiltonian properties on the class of hypercube-like networks. Information Processing Letters, 2004, 91(1): 11-17
CrossRef Google scholar
[124]
Park J-H, Chwa K-Y. Recursive circulants and their embeddings among hypercubes. Theoretical Computer Science, 2000, 244: 35-62
CrossRef Google scholar
[125]
Park J H, Kim H C, Lim H S. Panconnectivity and pancyclicity of hypercube-like interconnection networks with fault elements. Theoretical Computer Science, 2007, 377(1-3): 170-180
CrossRef Google scholar
[126]
Provost F J, Melhem R. Distributed fault tolerant embedding of binary tree and rings in hypercubes. In: Proc Internat Workshop on Defect and Fault Tolerance in VLSI Systems. 1988, 831-838
[127]
Saad Y, Schultz M H. Topological properties of hypercubes. IEEE Transactions on Computers, 1988, 37(7): 867-872
CrossRef Google scholar
[128]
Sen A, Sengupta A, Bandyopadhyay S. On some topological properties of hypercube, incomplete hypercube and supercube. In: Proceedings of the International Parallel Processing Symposium, Newport Beach, April, 1993. 636-642
[129]
Sengupta A. On ring in hypercubes with faulty nodes and links. Information Processing Letters, 1998, 68: 207-214
CrossRef Google scholar
[130]
Shih L-M, Tan J J M, Hsu L-H. Edge-bipancyclicity of conditional faulty hypercubes. Information Processing Letters, 2007, 105(1): 20-25
CrossRef Google scholar
[131]
Simmons G. Almost all n-dimensional rectangular lattices are Hamilton laceable. Congressus Numerantium, 1978, 21: 103-108
[132]
Stewart I A, Xiang Y. Bipanconnectivity and bipancyclicity in k-ary n-cubes. IEEE Transactions on Parallel and Distributed Systems, 2009, 20(1): 25-33
CrossRef Google scholar
[133]
Sun C-M, Hung C-N, Huang H-M, Hsu L-H, Jou Y-D. Hamiltonian laceability of faulty hypercubes. Journal of Interconnection Networks, 2007, 8(2): 133-145
CrossRef Google scholar
[134]
Tchuente M. Generation of permutations by graphical exchanges. Ars Combinatoria, 1982, 14: 115-122
[135]
Teng Y-H, Tan J J M, Hsu L-H. Panpositionable hamiltonicity and panconnectivity of the arrangement graphs. Applied Mathematics and Computation, 2008, 198(1): 414-432
CrossRef Google scholar
[136]
Tsai C H. Linear array and ring embeddings in conditional faulty hypercubes. Theoretical Computer Science, 2004, 314(3): 431-443
CrossRef Google scholar
[137]
Tsai C-H. Embedding various even cycles in the hypercube with mixed link and node failures. Applied Mathematics Letters, 2008, 21(8): 855-860
CrossRef Google scholar
[138]
Tsai C-H, Jiang S-Y. Path bipancyclicity of hypercubes. Information Processing Letters, 2007, 101(3): 93-97
CrossRef Google scholar
[139]
Tsai C-H, Lai Y-C. Conditional edge-fault-tolerant edge-bipancyclicity of hypercubes. Information Sciences, 2007, 177(24): 5590-5597
CrossRef Google scholar
[140]
Tsai C H, Liang T, Hsu L-H, Lin M-Y. Cycle embedding a faulty wrapped butterfly graphs. Networks, 2003, 42(2): 85-96
CrossRef Google scholar
[141]
Tsai C-H, Tan J-M, Liang T, Hsu L-H. Fault-tolerant Hamiltonian laceability of hypercubes. Information Processing Letters, 2002, 83(6): 301-306
CrossRef Google scholar
[142]
Tsai P-Y, Chen G-H, Fu J-S. Edge-fault-tolerant pancyclicity of alternating group graphs. Networks, DOI: 10.1002/net.20291
CrossRef Google scholar
[143]
Tsai P-Y, Fu J-S, Chen G-H. Edge-fault-tolerant Hamiltonicity of pancake graphs under the conditional fault model. Theoretical Computer Science, 2008, 409(3): 450-460
CrossRef Google scholar
[144]
Tsai P-Y, Fu J-S, Chen G-H. Fault-free longest paths in star networks with conditional link faults. Theoretical Computer Science, 2009, 410(8-10): 766-775
CrossRef Google scholar
[145]
Tseng Y-C. Embedding a ring in a hypercube with both faulty links and faulty nodes. Information Processing Letters, 1996, 59: 217-222
CrossRef Google scholar
[146]
Tseng Y C, Chang S H, Sheu J P. Fault-tolerant ring embedding in a star graph with both link and node failures. IEEE Trans Parallel and Distributed Systems, 1997, 8(12): 1185-1195
CrossRef Google scholar
[147]
Wang D, An T, Pan M, Wang K, Qu S. Hamiltonianlike properties of k-ary n-cubes. In: Proceedings of Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT05), 2005. 1002-1007
[148]
Wang D-J. Embedding hamiltonian cycles into folded hypercubes with faulty links. Journal of Parallel and Distributed Computing, 2001, 61: 545-564
CrossRef Google scholar
[149]
Wang H-L, Wang J-W, Xu J-M. Edge-fault-tolerant bipanconnectivity of hypercubes. Information Science, 2009, 179(4): 404-409
CrossRef Google scholar
[150]
Wang W-W, Ma M-J, Xu J-M. Fault-tolerant pancyclicity of augmented cubes. Information Processing Letters, 2007, 103(2): 52-56
CrossRef Google scholar
[151]
Williamson J E. Panconnected graphs II. Periodica Mathematica Hungarica, 1977, 8(2): 105-116
CrossRef Google scholar
[152]
Wu J, Huang K. The balanced hypercubes: A cube-based system for fault-tolerant applications. IEEE Transactions on Computers, 1997, 46(4): 484-490
CrossRef Google scholar
[153]
Xu J-M. Topological Structure and Analysis of Interconnection Networks. Dordrecht/Boston/London: Kluwer Academic Publishers, 2001
[154]
Xu J-M, Du Z-Z, Xu M. Edge-fault-tolerant edge-bipancyclicity of hypercubes. Information Processing Letters, 2005, 96(4): 146-150
CrossRef Google scholar
[155]
Xu J-M, Ma M-J. Cycles in folded hypercubes. Applied Mathematics Letters, 2006, 19(2): 140-145
CrossRef Google scholar
[156]
Xu J-M, Ma M-J, Lu M. Paths in Möbius cubes and crossed cubes. Information Processing Letters, 2006, 97(3): 94-97
CrossRef Google scholar
[157]
Xu J-M, Ma M-J, Du Z-Z. Edge-fault-tolerant properties of hypercubes and folded hypercubes. Australasian Journal of Combinatorics, 2006, 35: 7-16
[158]
Xu M, Hu X-D, Xu J-M. Edge-pancyclicity and hamiltonian laceability of balanced hypercubes. Applied Mathematics and Computation, 2007, 189(2): 1393-1401
CrossRef Google scholar
[159]
Xu M, Hu X-D, Zhu Q. Edge-bipancyclicity of star graphs under edge-fault tolerant. Applied Mathematics and Computation, 2006, 183(2): 972-979
CrossRef Google scholar
[160]
Xu M, Xu J-M. Edge-pancyclicity of Möbius cubes. Information Processing Letters, 2005, 96(4): 136-140
CrossRef Google scholar
[161]
Yang M-C, Li T-K, Tan J J M, Hsu L-H. Fault-tolerant cycle-embedding of crossed cubes. Information Processing Letters, 2003, 88(4): 149-154
CrossRef Google scholar
[162]
Yang M-C, Li T-K, Tan J J M, Hsu L-H. On embedding cycles into faulty twisted cubes. Information Sciences, 2006, 176(6): 676-690
CrossRef Google scholar
[163]
Yang M-C, Tan J J M, Hsu L-H. Hamiltonian circuit and linear array embeddings in faulty k-ary n-cubes. Journal of Parallel and Distributed Computing, 2007, 67(4): 362-368
CrossRef Google scholar
[164]
Yang P J, Tien S B, Raghavendra C S. Embedding of rings and meshes onto faulty hypercubes using free dimensions. IEEE Transactions on Computers, 1994, 43(5): 608-613
CrossRef Google scholar
[165]
Yang X F, Evans D J, Megson G M. The locally twisted cubes. International Journal of Computer Mathematics, 2005, 82(4): 401-413
CrossRef Google scholar
[166]
Yang X F, Evans D J, Megson G M, Tang Y Y. On the path-connectivity, vertexpancyclicity, and edge-pancyclicity of crossed cubes. Neural, Parallel and Scientific Computations, 2005, 13(1): 107-118
[167]
Yang X F, Megson G M, Evans D J. Locally twisted cubes are 4-pancyclic. Applied Mathematics Letters, 2004, 17: 919-925
CrossRef Google scholar
[168]
Yang X F, Megson G M, Evans D J. Pancyclicity of M¨obius cubes with faulty nodes. Microprocessors and Microsystems, 2006, 30(3): 165-172
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(356 KB)

Accesses

Citations

Detail

Sections
Recommended

/