
Conditions for strong ellipticity and M-eigenvalues
Liqun Qi, Hui-Hui Dai, Deren Han
Front. Math. China ›› 2009, Vol. 4 ›› Issue (2) : 349-364.
Conditions for strong ellipticity and M-eigenvalues
The strong ellipticity condition plays an important role in nonlinear elasticity and in materials. In this paper, we define M-eigenvalues for an elasticity tensor. The strong ellipticity condition holds if and only if the smallest M-eigenvalue of the elasticity tensor is positive. If the strong ellipticity condition holds, then the elasticity tensor is rank-one positive definite. The elasticity tensor is rank-one positive definite if and only if the smallest Z-eigenvalue of the elasticity tensor is positive. A Z-eigenvalue of the elasticity tensor is an M-eigenvalue but not vice versa. If the elasticity tensor is second-order positive definite, then the strong ellipticity condition holds. The converse conclusion is not right. Computational methods for finding M-eigenvalues are presented.
Elasticity tensor / strong ellipticity / M-eigenvalue / Z-eigenvalue
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
Ling C, Nie J, Qi L, Ye Y. SDP and SOS relaxations for bi-quadratic optimization over unit spheres. Department of Applied Mathematics, The Hong Kong Polytechnic University, July 2008. Manuscript
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
|
[23.] |
|
[24.] |
|
[25.] |
|
[26.] |
|
[27.] |
Wang Y, Qi L, Zhang X. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numerical Linear Algebra with Applications (to appear)
|
[28.] |
|
/
〈 |
|
〉 |