Conditions for strong ellipticity and M-eigenvalues

Liqun Qi, Hui-Hui Dai, Deren Han

Front. Math. China ›› 2009, Vol. 4 ›› Issue (2) : 349-364.

PDF(174 KB)
Front. Math. China All Journals
PDF(174 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (2) : 349-364. DOI: 10.1007/s11464-009-0016-6
Research Article
RESEARCH ARTICLE

Conditions for strong ellipticity and M-eigenvalues

Author information +
History +

Abstract

The strong ellipticity condition plays an important role in nonlinear elasticity and in materials. In this paper, we define M-eigenvalues for an elasticity tensor. The strong ellipticity condition holds if and only if the smallest M-eigenvalue of the elasticity tensor is positive. If the strong ellipticity condition holds, then the elasticity tensor is rank-one positive definite. The elasticity tensor is rank-one positive definite if and only if the smallest Z-eigenvalue of the elasticity tensor is positive. A Z-eigenvalue of the elasticity tensor is an M-eigenvalue but not vice versa. If the elasticity tensor is second-order positive definite, then the strong ellipticity condition holds. The converse conclusion is not right. Computational methods for finding M-eigenvalues are presented.

Keywords

Elasticity tensor / strong ellipticity / M-eigenvalue / Z-eigenvalue

Cite this article

Download citation ▾
Liqun Qi, Hui-Hui Dai, Deren Han. Conditions for strong ellipticity and M-eigenvalues. Front. Math. China, 2009, 4(2): 349‒364 https://doi.org/10.1007/s11464-009-0016-6
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Cardoso J. F. High-order contrasts for independent component analysis. Neural Computation, 1999, 11: 157-192.
CrossRef Google scholar
[2.]
Chang K. C., Pearson K., Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commu Math Sci, 2008, 6: 507-520.
[3.]
Chang K. C., Pearson K., Zhang T. On eigenvalue problems of real symmetric tensors. Journal of Mathematical Analysis and Applications, 2009, 350: 416-422.
CrossRef Google scholar
[4.]
Basser P. J., Pajevic S. Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI. Signal Processing, 2007, 87: 220-236.
CrossRef Google scholar
[5.]
Cox D., Little J., O’shea D. Using Algebraic Geometry, 1998, New York: Springer-Verlag.
[6.]
De Lathauwer L., De Moor B., Vandewalle J. On the best rank-1 and rank-(R1,R2,…,RN) approximation of higher-order tensor. SIAM J Matrix Anal Appl, 2000, 21: 1324-1342.
CrossRef Google scholar
[7.]
Knowles J. K., Sternberg E. On the ellipticity of the equations of non-linear elastostatics for a special material. J Elasticity, 1975, 5: 341-361.
CrossRef Google scholar
[8.]
Knowles J. K., Sternberg E. On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch Ration Mech Anal, 1977, 63: 321-336.
CrossRef Google scholar
[9.]
Kofidis E., Regalia P. A. On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J Matrix Anal Appl, 2002, 23: 863-884.
CrossRef Google scholar
[10.]
Lasserre J. B. Global optimization with polynomials and the problems of moments. SIAM Journal on Optimization, 2001, 11: 796-817.
CrossRef Google scholar
[11.]
Lim L. -H. Singular values and eigenvalues of tensors: a variational approach. Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’ 05), 2005, 1: 129-132.
[12.]
Ling C, Nie J, Qi L, Ye Y. SDP and SOS relaxations for bi-quadratic optimization over unit spheres. Department of Applied Mathematics, The Hong Kong Polytechnic University, July 2008. Manuscript
[13.]
Morse P.M., Feschbach H. Methods of Theoretic Physics, 1979, New York: McGraw-Hill, 519
[14.]
Ni G., Qi L., Wang F., Wang Y. The degree of the E-characteristic polynomial of an even order tensor. J Math Anal Appl, 2007, 329: 1218-1229.
CrossRef Google scholar
[15.]
Parrilo P. A. Semidefinite programming relaxation for semialgebraic Problems. Mathematical Programming, 2003, 96: 293-320.
CrossRef Google scholar
[16.]
Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Computation, 2005, 40: 1302-1324.
CrossRef Google scholar
[17.]
Qi L. Rank and eigenvalues of a supersymmetric tensor, a multivariate homogeneous polynomial and an algebraic surface defined by them. J Symbolic Computation, 2006, 41: 1309-1327.
CrossRef Google scholar
[18.]
Qi L. Eigenvalues and invariants of tensors. J Math Anal Appl, 2007, 325: 1363-1377.
CrossRef Google scholar
[19.]
Qi L., Sun W., Wang Y. Numerical multilinear algebra and its applications. Frontiers of Mathematics in China, 2007, 2(4): 501-526.
CrossRef Google scholar
[20.]
Qi L., Wang F., Wang Y. Z-eigenvalue methods for a global polynomial optimization problem. Mathematical Programming, 2009, 118: 301-316.
CrossRef Google scholar
[21.]
Qi L., Wang Y., Wu E. X. D-eigenvalues of diffusion kurtosis tensor. Journal of Computational and Applied Mathematics, 2008, 221: 150-157.
CrossRef Google scholar
[22.]
Rosakis P. Ellipticity and deformations with discontinuous deformation gradients in finite elastostatics. Arch Ration Mech Anal, 1990, 109: 1-37.
CrossRef Google scholar
[23.]
Simpson H. C., Spector S. J. On copositive matrices and strong ellipticity for isotropic elastic materials. Arch Rational Mech Anal, 1983, 84: 55-68.
CrossRef Google scholar
[24.]
Thomson W. Elements of a mathematical theory of elasticity. Philos Trans R Soc, 1856, 166: 481
CrossRef Google scholar
[25.]
Thomson W. Elasticity. Encyclopedia Briannica, 1878 9th Ed. London, Edingburgh: Adam and Charles Black, 796-825.
[26.]
Wang Y., Aron M. A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. Journal of Elasticity, 1996, 44: 89-96.
CrossRef Google scholar
[27.]
Wang Y, Qi L, Zhang X. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numerical Linear Algebra with Applications (to appear)
[28.]
Zhang T., Golub G. H. Rank-1 approximation of higher-order tensors. SIAM J Matrix Anal Appl, 2001, 23: 534-550.
CrossRef Google scholar
AI Summary AI Mindmap
PDF(174 KB)

877

Accesses

67

Citations

Detail

Sections
Recommended

/