On vertex-coloring edge-weighting of graphs

Hongliang LU, Xu YANG, Qinglin YU

PDF(162 KB)
PDF(162 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (2) : 325-334. DOI: 10.1007/s11464-009-0014-8
RESEARCH ARTICLE
RESEARCH ARTICLE

On vertex-coloring edge-weighting of graphs

Author information +
History +

Abstract

A k-edge-weightingw of a graph G is an assignment of an integer weight, w(e) ∈ {1, …, k}, to each edge e. An edge-weighting naturally induces a vertex coloring c by defining for every uV (G). A k-edge-weighting of a graph G is vertex-coloring if the induced coloring c is proper, i.e., c(u) ≠ c(v) for any edge uvE(G). When k ≡ 2 (mod 4) and k≥6, we prove that if G is k-colorable and 2-connected, δ(G)≥k - 1, then G admits a vertex-coloring k-edge-weighting. We also obtain several suffcient conditions for graphs to be vertex-coloring k-edge-weighting.

Keywords

Vertex coloring / edge-weighting

Cite this article

Download citation ▾
Hongliang LU, Xu YANG, Qinglin YU. On vertex-coloring edge-weighting of graphs. Front Math Chin, 2009, 4(2): 325‒334 https://doi.org/10.1007/s11464-009-0014-8

References

[1]
Addario-Berry L, Aldred R E L, Dalal K, Reed B A. Vertex coloring edge partitions. J Combin Theory, Ser B, 2005, 94: 237-244
CrossRef Google scholar
[2]
Balister P N, Riordan O M, Schelp R H. Vertex-distinguishing edge colorings of graphs. J Graph Theory, 2003, 42: 95-109
CrossRef Google scholar
[3]
Bollobás B. Modern Graph Theory. 2nd Ed. New York: Springer-Verlag, 1998
[4]
Karónski M, Luczak T, Thomason A. Edge weights and vertex colors. J Combin Theory, Ser B, 2004, 91: 151-157
CrossRef Google scholar
[5]
Wang T, Yu Q. On vertex-coloring 13-edge-weighting. Front Math China, 2008, 3(4): 581-587
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(162 KB)

Accesses

Citations

Detail

Sections
Recommended

/