Error analysis of Padé iterations for computing matrix invariant subspaces

Zhenyue Zhang , Rui He

Front. Math. China ›› 2009, Vol. 4 ›› Issue (2) : 381 -404.

PDF (430KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (2) : 381 -404. DOI: 10.1007/s11464-009-0013-9
Research Article
RESEARCH ARTICLE

Error analysis of Padé iterations for computing matrix invariant subspaces

Author information +
History +
PDF (430KB)

Abstract

The method of Padé matrix iteration is commonly used for computing matrix sign function and invariant subspaces of a real or complex matrix. In this paper, a detailed rounding error analysis is given for two classical schemes of the Pad’e matrix iteration, using basic matrix floating point arithmetics. Error estimations of computing invariant subspaces by the Padé sign iteration are also provided. Numerical experiments are given to show the numerical behaviors of the Padé iterations and the corresponding subspace computation.

Keywords

Invariant subspace / matrix sign function / rounding error / Padé iteration / subspace approximation

Cite this article

Download citation ▾
Zhenyue Zhang, Rui He. Error analysis of Padé iterations for computing matrix invariant subspaces. Front. Math. China, 2009, 4(2): 381-404 DOI:10.1007/s11464-009-0013-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bamberger A., Engquist B., Halpern L., Joly P. Higher order paraxial wave equation approximations in heterogeneous media. SIAM J Appl Math, 1988, 48(1): 129-154.

[2]

Benner P., Quintana-Ort E. S. Solving stable generalized Lyapunov equations with the matrix sign function. Numerical Algorithms, 1999, 20: 75-100.

[3]

Byers R, He C Y, Mehrmann V. On the matrix sign function method for the computation of invariant subspaces. Proceedings of the 1996 IEEE International Symposium on Computer-Aided Control System Design, Dearborn, MI, September 15–18, 1996

[4]

Demman E., Beavers N. The matrix sign function and computation in systems. Appl Math Comput, 1976, 2: 63-94.

[5]

Golub G. H., Van Loan C. F. Matrix Computations, 1996 3rd ed. Baltimore: Johns Hopkins University Press.

[6]

Higham N. J. Stable iterations for the matrix square root. Numerical Algorithms, 1997, 15: 227-242.

[7]

Higham N. J. Accuracy and Stability of Numerical Algorithms, 2002 2nd ed. Phil: SIAM.

[8]

Kenney C., Laub A. J. Rational iterative methods for the matrix sign function. SIAM J Matrix Anal Appl, 1991, 12(2): 273-291.

[9]

Kenney C., Laub A. J. The matrix sign function. IEEE Trans Automat Control, 1995, 40(8): 1330-1348.

[10]

Roberts J. D. Linear model reduction and solution of the algebraic Riccati equation. Inter J Control, 1980, 32: 677-687.

[11]

Zhang Z. Y., Zha H. Y. Structure and perturbation analysis of truncated SVD for column-partitioned matrices. SIAM J Matrix Anal Appl, 2001, 22(4): 1245-1262.

AI Summary AI Mindmap
PDF (430KB)

774

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/