Error analysis of Padé iterations for computing matrix invariant subspaces

Zhenyue ZHANG, Rui HE

PDF(430 KB)
PDF(430 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (2) : 381-404. DOI: 10.1007/s11464-009-0013-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Error analysis of Padé iterations for computing matrix invariant subspaces

Author information +
History +

Abstract

The method of Padématrix iteration is commonly used for computing matrix sign function and invariant subspaces of a real or complex matrix. In this paper, a detailed rounding error analysis is given for two classical schemes of the Padé matrix iteration, using basic matrix floating point arithmetics. Error estimations of computing invariant subspaces by the Padé sign iteration are also provided. Numerical experiments are given to show the numerical behaviors of the Pad´e iterations and the corresponding subspace computation.

Keywords

Invariant subspace / matrix sign function / rounding error / Padéiteration / subspace approximation

Cite this article

Download citation ▾
Zhenyue ZHANG, Rui HE. Error analysis of Padé iterations for computing matrix invariant subspaces. Front Math Chin, 2009, 4(2): 381‒404 https://doi.org/10.1007/s11464-009-0013-9

References

[1]
Bamberger A, Engquist B, Halpern L, Joly P. Higher order paraxial wave equation approximations in heterogeneous media. SIAM J Appl Math, 1988, 48(1): 129-154
CrossRef Google scholar
[2]
Benner P, Quintana-Ort E S. Solving stable generalized Lyapunov equations with the matrix sign function. Numerical Algorithms, 1999, 20: 75-100
CrossRef Google scholar
[3]
Byers R, He C Y, Mehrmann V. On the matrix sign function method for the computation of invariant subspaces. Proceedings of the 1996 IEEE International Symposium on Computer-Aided Control System Design, Dearborn, MI, September 15-18, 1996
[4]
Demman E, Beavers N. The matrix sign function and computation in systems. Appl Math Comput, 1976, 2: 63-94
CrossRef Google scholar
[5]
Golub G H, Van Loan C F. Matrix Computations. 3rd ed. Baltimore: Johns Hopkins University Press, 1996
[6]
Higham N J. Stable iterations for the matrix square root. Numerical Algorithms, 1997, 15: 227-242
CrossRef Google scholar
[7]
Higham N J. Accuracy and Stability of Numerical Algorithms. 2nd ed. Phil: SIAM, 2002
[8]
Kenney C, Laub A J. Rational iterative methods for the matrix sign function. SIAM J Matrix Anal Appl, 1991, 12(2): 273-291
CrossRef Google scholar
[9]
Kenney C, Laub A J. The matrix sign function. IEEE Trans Automat Control, 1995, 40(8): 1330-1348
CrossRef Google scholar
[10]
Roberts J D. Linear model reduction and solution of the algebraic Riccati equation. Inter J Control, 1980, 32: 677-687 (Reprint of Technical Report No TR-13, CUED/B-Control, Engineering Department, Cambridge University, 1971)
[11]
Zhang Z Y, Zha H Y. Structure and perturbation analysis of truncated SVD for column-partitioned matrices. SIAM J Matrix Anal Appl, 2001, 22(4): 1245-1262
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(430 KB)

Accesses

Citations

Detail

Sections
Recommended

/