Stability of implicit-explicit linear multistep methods for ordinary and delay differential equations

Toshiyuki Koto

Front. Math. China ›› 2009, Vol. 4 ›› Issue (1) : 113-129.

Front. Math. China All Journals
Front. Math. China ›› 2009, Vol. 4 ›› Issue (1) : 113-129. DOI: 10.1007/s11464-009-0005-9
Research Article

Stability of implicit-explicit linear multistep methods for ordinary and delay differential equations

Author information +
History +

Abstract

Stability properties of implicit-explicit (IMEX) linear multistep methods for ordinary and delay differential equations are analyzed on the basis of stability regions defined by using scalar test equations. The analysis is closely related to the stability analysis of the standard linear multistep methods for delay differential equations. A new second-order IMEX method which has approximately the same stability region as that of the IMEX Euler method, the simplest IMEX method of order 1, is proposed. Some numerical results are also presented which show superiority of the new method.

Keywords

Implicit-explicit (IMEX) method / delay differential equation / stability region

Cite this article

Download citation ▾
Toshiyuki Koto. Stability of implicit-explicit linear multistep methods for ordinary and delay differential equations. Front. Math. China, 2009, 4(1): 113‒129 https://doi.org/10.1007/s11464-009-0005-9
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Akrivis G., Karakatsani F. Modified implicit-explicit BDF methods for nonlinear parabolic equations. BIT, 2003, 43: 467-483.
CrossRef Google scholar
[2.]
Ascher U. M., Ruuth S. J., Wetton B. T. R. Implicit-explicit methods for time-dependent partial differential equations. SIAM J Numer Anal, 1995, 32: 797-823.
CrossRef Google scholar
[3.]
Barwell V. K. Special stability problems for functional differential equations. BIT, 1975, 15: 130-135.
CrossRef Google scholar
[4.]
Bellen A., Zennaro M. Numerical Methods for Delay Differential Equations, 2003, Oxford: Oxford University Press
CrossRef Google scholar
[5.]
Bickart T. A. P-stable and P[α, β]-stable integration/interpolation methods in the solution of retarded differential-difference equations. BIT, 1982, 22: 464-476.
CrossRef Google scholar
[6.]
Frank J., Hundsdorfer W., Verwer J. G. On the stability of implicit-explicit multistep methods. Appl Numer Math, 1997, 25: 193-205.
CrossRef Google scholar
[7.]
Hairer E., Wanner G. Solving Ordinary Differential Equations. II, Stiff and Differential-Algebraic Problems, 1996 2nd revised ed. Berlin: Springer-Verlag.
[8.]
Hoff D. Stability and convergence of finite difference methods for systems of nonlinear reaction-diffusion equations. SIAM J Numer Anal, 1978, 15: 1161-1177.
CrossRef Google scholar
[9.]
Hundsdorfer W., Ruuth S. J. IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J Comput Phys, 2007, 225: 2016-2042.
CrossRef Google scholar
[10.]
Hundsdorfer W., Verwer J. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, 2003, Berlin: Springer-Verlag.
[11.]
in’t Hout K. J., Spijker M. N. Strehmel K. The θ-methods in the numerical solution of delay differential equations. Numerical Treatment of Differential Equations, 1991, Stuttgart: B G Teubner Verlagsgesellschaft mbH, 61-67.
[12.]
in’t Hout K. J., Spijker M. N. Stability analysis of numerical methods for delay differential equations. Numer Math, 1991, 59: 807-814.
CrossRef Google scholar
[13.]
Jackiewicz Z., Zubik-Kowal B. Spectral collocation and waveform relaxation methods for nonlinear delay partial differential equations. Appl Numer Math, 2006, 56: 433-443.
CrossRef Google scholar
[14.]
Koto T. Stability of IMEX Runge-Kutta methods for delay differential equations. J Comput Appl Math, 2008, 211: 201-212.
CrossRef Google scholar
[15.]
Koto T. IMEX Runge-Kutta schemes for reaction-diffusion equations. J Comput Appl Math, 2008, 215: 182-195.
CrossRef Google scholar
[16.]
Liu M. Z., Spijker M. N. The stability of the ?-methods in the numerical solution of delay differential equations. IMA J Numer Anal, 1990, 10: 31-48.
CrossRef Google scholar
[17.]
Mead J., Zubik-Kowal B. An iterated pseudospectral method for delay partial differential equations. Appl Numer Math, 2005, 55: 227-250.
CrossRef Google scholar
[18.]
Pareschi L., Russo G. Trigiante D. Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations. Recent Trends in Numerical Analysis, 2001, Huntington: Nova Science Publishers Inc, 269-288.
[19.]
Varah J. M. Stability restrictions on second order, three level finite difference schemes for parabolic equations. SIAM J Numer Anal, 1980, 17: 300-309.
CrossRef Google scholar
[20.]
Wu J. Theory and Applications of Partial Functional-Differential Equations, 1996, New York: Springer-Verlag.

10

Accesses

17

Citations

Detail

Sections
Recommended

/