On collocation methods for delay differential and Volterra integral equations with proportional delay
Emiko Ishiwata , Yoshiaki Muroya
Front. Math. China ›› 2009, Vol. 4 ›› Issue (1) : 89 -111.
On collocation methods for delay differential and Volterra integral equations with proportional delay
To compute long term integrations for the pantograph differential equation with proportional delay qt, 0 < q ⩽ 1: y′(t) = ay(t) + by(qt) + f(t), y(0) = y0, we offer two kinds of numerical methods using special mesh distributions, that is, a rational approximant with ‘quasi-uniform meshes’ (see E. Ishiwata and Y. Muroya [Appl. Math. Comput., 2007, 187: 741-747]) and a Gauss collocation method with ‘quasi-constrained meshes’. If we apply these meshes to rational approximant and Gauss collocation method, respectively, then we obtain useful numerical methods of order p* = 2m for computing long term integrations. Numerical investigations for these methods are also presented.
Delay differential equation / proportional delay / collocation / quasi-uniform mesh / quasi-constrained mesh
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
/
| 〈 |
|
〉 |