A review of theoretical and numerical analysis for nonlinear stiff Volterra functional differential equations

Shoufu Li

Front. Math. China ›› 2009, Vol. 4 ›› Issue (1) : 23-48.

PDF(285 KB)
Front. Math. China All Journals
PDF(285 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (1) : 23-48. DOI: 10.1007/s11464-009-0003-y
Survey Article
SURVEY ARTICLE

A review of theoretical and numerical analysis for nonlinear stiff Volterra functional differential equations

Author information +
History +

Abstract

In this review, we present the recent work of the author in comparison with various related results obtained by other authors in literature. We first recall the stability, contractivity and asymptotic stability results of the true solution to nonlinear stiff Volterra functional differential equations (VFDEs), then a series of stability, contractivity, asymptotic stability and B-convergence results of Runge-Kutta methods for VFDEs is presented in detail. This work provides a unified theoretical foundation for the theoretical and numerical analysis of nonlinear stiff problems in delay differential equations (DDEs), integro-differential equations (IDEs), delayintegro-differential equations (DIDEs) and VFDEs of other type which appear in practice.

Keywords

Nonlinear stiff problem / functional differential equation / stability / contractivity / asymptotic stability / Runge-Kutta method

Cite this article

Download citation ▾
Shoufu Li. A review of theoretical and numerical analysis for nonlinear stiff Volterra functional differential equations. Front. Math. China, 2009, 4(1): 23‒48 https://doi.org/10.1007/s11464-009-0003-y
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Alexander R. Diagonally implicit Runge-Kutta methods for stiff ODEs. SIAM J Numer Anal, 1977, 14: 1006-1021.
CrossRef Google scholar
[2.]
Baker C. T. H. A perspective on the numerical treatment of Volterra equations. J Comput Appl Math, 2000, 125: 217-249.
CrossRef Google scholar
[3.]
Baker C. T. H., Ford N. J. Agarwal R. P., Chow Y. M., Wilson S. J. Convergence of linear multistep methods for a class of delay integro-differential equations. Numerical Mathematics, Singapore 1988, 1988, Basel: Birkhäuser, 47-59.
[4.]
Baker C. T. H., Ford N. J. Asymptotic error expansions for linear multistep methods for a class of delay integro-differential equations. Bull Soc Math Grèce (NS), 1990, 31: 5-18.
[5.]
Baker C. T. H., Ford N. J. Stability properties of a scheme for the approximate solution of a delay integro-differential equation. Appl Numer Math, 1992, 9: 357-370.
CrossRef Google scholar
[6.]
Baker C. T. H., Keech M. S. Stability regions in the numerical treatment of Volterra integral equations. SIAM J Numer Anal, 1978, 15: 394-417.
CrossRef Google scholar
[7.]
Baker C. T. H., Makroglou A., Short E. Regions of stability in the numerical treatment of Volterra integro-differential equations. SIAM J Numer Anal, 1979, 16: 890-910.
CrossRef Google scholar
[8.]
Baker C. T. H., Miller G. F. Treatment of Integral Equations by Numerical Methods, 1982, London: Academic Press.
[9.]
Baker C. T. H., Tang A. Stability analysis of continuous implicit Runge-Kutta methods for Volterra integro-differential systems with unbounded delays. Appl Numer Math, 1997, 24: 153-173.
CrossRef Google scholar
[10.]
Barwell V. L. Special stability problems for functional equations. BIT, 1975, 15: 130-135.
CrossRef Google scholar
[11.]
Bellen A., Guglielmi N., Torelli L. Asymptotic stability properties of θ-methods for the pantograph equation. Appl Numer Math, 1997, 24: 279-293.
CrossRef Google scholar
[12.]
Bellen A., Maset S. Numerical solution of constant coefficient linear delay differential equations as abstract Cauchy problems. Numer Math, 2000, 84: 351-374.
CrossRef Google scholar
[13.]
Bellen A., Zennaro M. Strong contractivity properties of numerical methods for ordinary and delay differential equations. Appl Numer Math, 1992, 9: 321-346.
CrossRef Google scholar
[14.]
Bellen A., Zennaro M. Numerical Methods for Delay Differential Equations, 2003, Oxford: Oxford University Press
CrossRef Google scholar
[15.]
Brunner H. A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. J Comput Appl Math, 1982, 8: 213-229.
CrossRef Google scholar
[16.]
Brunner H. Nonpolynomial spline collocation for Volterra equations with weakly singular kernels. SIAM J Numer Anal, 1983, 20: 1106-1119.
CrossRef Google scholar
[17.]
Brunner H. The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math Comp, 1985, 45: 417-437.
CrossRef Google scholar
[18.]
Brunner H. On the history of numerical methods for Volterra integral equations. CWI Newslett, 1986, 11: 3-20.
[19.]
Brunner H. The numerical solution of neutral Volterra integro-differential equations with delay arguments. Ann Numer Math, 1994, 1: 309-322.
[20.]
Brunner H. 1.-1. one hundred years of Volterra integral equations of the first kind. Appl Numer Math, 1997, 24: 83-93.
CrossRef Google scholar
[21.]
Brunner H. The discretization of neutral functional integro-differential equations by collocation methods. Z Anal Anwendungen, 1999, 18: 393-406.
[22.]
Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge Monographs, 2004, Cambridge: Cambridge University Press.
[23.]
Brunner H., van der Houwen P. J. The Numerical Solution of Volterra Equations. CWI Monographs, 1986, Amsterdam: North-Holland.
[24.]
Dekker K., Verwer J. G. Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, 1984, Amsterdam: North Holland.
[25.]
Enright W. H., Hu M. Continuous Runge-Kutta methods for neutral Volterra integrodifferential equations with delay. Appl Numer Math, 1997, 24: 175-190.
CrossRef Google scholar
[26.]
Frank R., Schneid J., Ueberhuber C. W. Stability properties of implicit Runge-Kutta methods. SIAM J Numer Anal, 1985, 22: 497-514.
CrossRef Google scholar
[27.]
Frank R., Schneid J., Ueberhuber C. W. Order results for implicit Runge-Kutta methods applied to stiff systems. SIAM J Numer Anal, 1985, 22: 515
CrossRef Google scholar
[28.]
Hout K. J. A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations. BIT, 1992, 32: 634-649.
CrossRef Google scholar
[29.]
Hout K. J. The stability of θ-methods for systems of delay differential equations. Appl Numer Math, 1994, 10: 323-334.
[30.]
Hout K. J. A note on unconditional maximum norm contractivity of waveform relaxation Runge-Kutta methods. SIAM J Numer Anal, 1996, 33: 1125-1134.
CrossRef Google scholar
[31.]
Hout K. J. Stability analysis of Runge-Kutta methods for systems of delay differential equations. IMA J Numer Anal, 1997, 17: 17-27.
CrossRef Google scholar
[32.]
Hu G. D., Mitsui T. Stability of linear delay differential systems with matrices having common eigen-vectors. Japan J Indust Appl Math, 1996, 13: 487-494.
CrossRef Google scholar
[33.]
Huang C. M., Chen G. N., Li S. F., Fu H. Y. D-convergence of general linear methods for stiff delay differential equations. Comput Math Appl, 2001, 41: 727-639.
[34.]
Huang C. M., Fu H. Y., Li S. F., Chen G. N. Stability analysis of Runge-Kutta methods for nonlinear delay differential equations. BIT, 1999, 39: 270-280.
CrossRef Google scholar
[35.]
Huang C. M., Fu H. Y., Li S. F., Chen G. N. Stability and error analysis of one-lag methods for nonlinear delay differential equations. J Comput Appl Math, 1999, 103: 263-279.
CrossRef Google scholar
[36.]
Huang C. M., Fu H. Y., Li S. F., Chen G. N. D-convergence of Runge-Kutta methods for stiff delay differential equations. J Comput Math, 2001, 19: 259-268.
[37.]
Huang C. M., Li S. F., Fu H. Y., Chen G. N. D-convergence of one-leg methods for stiff delay differential equations. J Comput Math, 2001, 19: 601-606.
[38.]
Huang C. M., Li S. F., Fu H. Y., Chen G. N. Nonlinear stability of general linear methods for delay differential equations. BIT, 2002, 42: 380-392.
CrossRef Google scholar
[39.]
Huang C. M., Vandewalle S. Stability of Runge-Kutta-Pouzet Methods for Volterra Integral and Integro-differential Equations with Delays. Technical Report TW 361, 2003, Leuven, Belgium: Department of Computer Science, Katholieke Universiteit Leuven.
[40.]
Huang C. M., Vandewalle S. Discretized stability and error growth of the nonautonomous pantograph equation. SIAM J Numer Anal, 2005, 42: 2020-2042.
CrossRef Google scholar
[41.]
Jackiewicz Z. Asymptotic stability analysis of θ-methods for functional differential equations. Numer Math, 1984, 43: 389-396.
CrossRef Google scholar
[42.]
Kauthen J.-P., Brunner H. Continuous collocation approximations to solutions of first kind Volterra equations. Math Comp, 1997, 66: 1441-1459.
CrossRef Google scholar
[43.]
Koto T. A stability properties of A-stable natural Runge-Kutta methods for systems of delay differential equations. BIT, 1994, 34: 262-267.
CrossRef Google scholar
[44.]
Koto T. Stability of Runge-Kutta methods for delay integro-differential equations. J Comput Appl Math, 2002, 145: 483-492.
CrossRef Google scholar
[45.]
Kuang J. X., Cong Y. H. Stability of Numerical Methods for Delay Differential Equations, 2005, Beijing: Science Press.
[46.]
Kuang J. X., Xiang J. X., Tian H. J. The asymptotic stability of one-parameter methods for neutral differential equations. BIT, 1994, 34: 400-408.
CrossRef Google scholar
[47.]
Li Shoufu. B-convergence of general linear methods. Proc BAIL-V Int Conf, Shanghai, 1988, 203–208
[48.]
Li S. Stability and B-convergence of general linear methods. J Comput Appl Math, 1989, 28: 281-296.
CrossRef Google scholar
[49.]
Li S. Theory of Computational Methods for Stiff Differential Equations, 1997, Changsha: Hunan Science and Technology Press.
[50.]
Li S. B-theory of Runge-Kutta methods for stiff Volterra functional differential equations. Science in China, 2003, 46(5): 662-674.
[51.]
Li S. Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach spaces. Science in China, 2005, 48(3): 372-387.
CrossRef Google scholar
[52.]
Li S. B-theory of general linear methods for Volterra functional differential equations. Applied Numerical Mathematics, 2005, 53: 57-72.
CrossRef Google scholar
[53.]
Li Shoufu. Contractivity and asymptotic stability properties of Runge-Kutta methods for Volterra functional differential equations (to appear)
[54.]
Linz P. Analytical and Numerical Methods for Volterra Equations, 1985, Philadelphia: SIAM.
[55.]
Liu M, Spijker M The stability of the θ-methods in the numerical solution of delay differential equations. IMA J Numer Anal, 1990, 10: 31-48.
[56.]
Liu Y. On the θ-methods for delay differential equations with infinite lag. J Comput Appl Math, 1996, 71: 177-190.
CrossRef Google scholar
[57.]
Luzyanina T. E. K. R. D. Computing stability of differential equations with bounded and distributed delays. Numer Algorithms, 2003, 34: 41-66.
CrossRef Google scholar
[58.]
McKee S. Volterra integral and integro-differential equations arising from problems in engineering and science. Bull Inst Math Appl, 1988, 24: 135-138.
[59.]
Tian H. J., Kuang J. X. The stability of linear multistep methods for systems of delay differential equations. Numer Mtah J Chinese Univ, 1995, 4: 10-16.
[60.]
Tian H. J., Kuang J. X. The numerical stability of linear multistep methods for delay differential equations with many delays. SIAM J Numer Anal, 1996, 33: 883-889.
CrossRef Google scholar
[61.]
Torelli L. Stability of numerical methods for delay differential equations. J Comput Appl Math, 1989, 25: 15-26.
CrossRef Google scholar
[62.]
Wang W. Q., Li S. F. D-convergence of one-leg methods for nonlinear stiff delay differential equations with a variable delay. Chinese J Numer Math Appl, 2004, 26: 96-105.
[63.]
Wang W. S., Li S. F., Su K. Nonlinear stability of Runge-Kutta methods for neutral delay differential equations. J Comput Appl Math, 2008, 214: 175-185.
CrossRef Google scholar
[64.]
Wang W. S., Zhang Y., Li S. F. Nonlinear stability of one-leg methods for delay differential equations of neutral type. Applied Numerical Mathematics, 2008, 58: 122-130.
CrossRef Google scholar
[65.]
Watanabe D. S., Roth M. G. The stability of difference formulas for delay differential equations. SIAM J Numer Anal, 1985, 22: 132-145.
CrossRef Google scholar
[66.]
Wen L. P., Li S. F. Stability of theoretical solution and numerical solution of nonlinear differential equations with piecewise delays. J Comput Math, 2005, 23: 393-400.
[67.]
Yu Y., Li S. Stability analysis of Runge-Kutta methods for nonlinear systems of pantograph equations. J Comput Math, 2005, 23: 351-356.
[68.]
Zennaro M. P-stability properties of Runge-Kutta methods for delay differential equations. Numer Math, 1986, 49: 305-318.
CrossRef Google scholar
[69.]
Zennaro M. Asymptotic stability analysis of Runge-Kutta methods for nonlinear systems of delay differential equations. Numer Math, 1997, 77: 549-563.
CrossRef Google scholar
[70.]
Zhang C. J., Vandewalle S. Stability analysis of Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. IMA J Numer Anal, 2004, 24: 193-214.
CrossRef Google scholar
[71.]
Zhang C. J., Vandewalle S. Stability analysis of Volterra delay-integro-differential equations and their backward differentiation time discretization. J Comput Appl Math, 2004, 164-165: 797-814.
CrossRef Google scholar
[72.]
Zhang C. J., Vandewalle S. General linear methods for Volterra integro-differential equations with memory. SIAM J Sci Comput, 2006, 27(6): 2010-2031.
CrossRef Google scholar
[73.]
Zhang C. J., Zhou S. Z. Nonlinear stability and D-convergence of Runge-Kutta methods for delay differential equations. J Comput Appl Math, 1997, 85: 225-237.
CrossRef Google scholar
AI Summary AI Mindmap
PDF(285 KB)

982

Accesses

10

Citations

Detail

Sections
Recommended

/