Backward/Hopf bifurcations in SIS models with delayed nonlinear incidence rates

Yicheng Liu , Yimin Du , Jianhong Wu

Front. Math. China ›› 2008, Vol. 3 ›› Issue (4) : 535 -553.

PDF (244KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (4) : 535 -553. DOI: 10.1007/s11464-008-0040-y
Research Article

Backward/Hopf bifurcations in SIS models with delayed nonlinear incidence rates

Author information +
History +
PDF (244KB)

Abstract

The classical SIS model with a constant transmission rate exhibits simple dynamic behaviors fully determined by the basic reproduction number. Behavioral changes and intervention measures influenced by the level of infection, likely with a time lag, require the transmission rate to be a nonlinear function of the total infectives. This nonlinear transmission, as shown in this paper via a combination of qualitative and numerical analysis, can generate interesting dynamical behaviors at the population level including backward and Hopf bifurcations. We conclude that sustained infections and periodic outbreaks can be consequences of delayed changes in behaviors or human intervention.

Keywords

Delayed epidemic model / nonlinear incidence / periodic outbreak / backward bifurcation / behavior change

Cite this article

Download citation ▾
Yicheng Liu, Yimin Du, Jianhong Wu. Backward/Hopf bifurcations in SIS models with delayed nonlinear incidence rates. Front. Math. China, 2008, 3(4): 535-553 DOI:10.1007/s11464-008-0040-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexander M. E., Moghadas S. M., Rost G., Wu J. H. A delay differential model for pandemic influenza with antiviral treatment. Bulletin Math Biology, 2008, 70: 382-397.

[2]

Brauer F., van den Driessche P., Wu J. Mathematical Epidemiology, 2008, Berlin: Springer.

[3]

Capasso V., Serio G. A generalization of the Kermack-McKendrick deterministic epidemic model. Math Biosci, 1978, 42: 41-61.

[4]

Ghosh M., Chandra P., Sinha P., Shukla J. B. Modelling the spread of bacterial disease: effect of service providers from an environmentally degraded region. Appl Math Comput, 2005, 160(3): 615-647.

[5]

Hale J. K., Verduyn Lunel S. M. Introduction to Functional Differential Equations, 1993, Berlin: Springer-Verlag.

[6]

Hassard B. D., Kazarinoff N. D., Wan Y. H. Theory and Applications of Hopf Bifurcation, 1981, Cambridge: Cambridge University Press.

[7]

Hethcote H. W., van den Driessche P. Some epidemiological models with nonlinear incidence. J Math Biol, 1991, 29: 271-287.

[8]

Hilker F. M., Langlais M., Petrovskii S. V., Malchow H. A diffusive SI model with Allee effect and application to FIV. Math Biosci, 2007, 206(1): 61-80.

[9]

Li J. Q., Zhou Y. C., Wu J. H., Ma Z. Complex dynamics of a simple epidemic model with a nonlinear incidence. Discrete and Continuous Dynamical Systems-Series B, 2007, 8: 161-173.

[10]

Liu W., Hethcote H. W., Levin S. A. Dynamical behavior of epidemiological model with nonlinear incidence rates. J Math Biol, 1987, 25: 359-380.

[11]

Looss G., Adelmeyer M. Topic in Bifurcation Theory and Application, 1998, Singapore/New York: World Scientific.

[12]

Ruan S. G., Wang W. D. Dynamical behavior of an epidemic model with a nonlinear incidence rate. J Diff Equs, 2003, 18: 135-163.

[13]

Saenz R. A., Hethcote H. W. Competing species models with an infectious disease. Math Biosci Eng, 2006, 3(1): 219-235.

[14]

van den Driessche P., Watmough J. A simple SIS epidemic model with a backward bifurcation. J Math Biol, 2000, 40: 525-540.

[15]

Wei J. J., Li M. Y. Hopf bifurcation analysis in a delayed Nicholson blowflies equation. Nonlinear Anal, 2005, 60(7): 1351-1367.

[16]

Wei J. J., Zou X. F. Bifurcation analysis of a population model and the resulting SIS epidemic model with delay. J Comput Appl Math, 2006, 197(1): 169-187.

[17]

Wu J. H. Symmetric functional-differential equations and neural networks with memory. Trans Amer Math Soc, 1998, 350(12): 4799-4838.

AI Summary AI Mindmap
PDF (244KB)

943

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/