Backward/Hopf bifurcations in SIS models with delayed nonlinear incidence rates

LIU Yicheng1, DU Yimin2, WU Jianhong2

PDF(244 KB)
PDF(244 KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (4) : 535-553. DOI: 10.1007/s11464-008-0040-y

Backward/Hopf bifurcations in SIS models with delayed nonlinear incidence rates

  • LIU Yicheng1, DU Yimin2, WU Jianhong2
Author information +
History +

Abstract

The classical SIS model with a constant transmission rate exhibits simple dynamic behaviors fully determined by the basic reproduction number. Behavioral changes and intervention measures influenced by the level of infection, likely with a time lag, require the transmission rate to be a nonlinear function of the total infectives. This nonlinear transmission, as shown in this paper via a combination of qualitative and numerical analysis, can generate interesting dynamical behaviors at the population level including backward and Hopf bifurcations. We conclude that sustained infections and periodic outbreaks can be consequences of delayed changes in behaviors or human intervention.

Cite this article

Download citation ▾
LIU Yicheng, DU Yimin, WU Jianhong. Backward/Hopf bifurcations in SIS models with delayed nonlinear incidence rates. Front. Math. China, 2008, 3(4): 535‒553 https://doi.org/10.1007/s11464-008-0040-y

References

1. Alexander M E, Moghadas S M, Rost G, Wu J H . A delay differentialmodel for pandemic influenza with antiviral treatment. Bulletin Math Biology, 2008, 70: 382–397. doi:10.1007/s11538-007-9257-2
2. Brauer F, van den Driessche P,Wu J . Mathematical Epidemiology. Berlin: Springer, 2008
3. Capasso V, Serio G . A generalization of the Kermack-McKendrickdeterministic epidemic model. Math Biosci, 1978, 42: 41–61. doi:10.1016/0025-5564(78)90006-8
4. Ghosh M, Chandra P, Sinha P, Shukla J B . Modellingthe spread of bacterial disease: effect of service providers froman environmentally degraded region. ApplMath Comput, 2005, 160(3): 615–647
5. Hale J K, Verduyn Lunel S M . Introduction to FunctionalDifferential Equations. Berlin: Springer-Verlag, 1993
6. Hassard B D, Kazarinoff N D, Wan Y H . Theory and Applications of Hopf Bifurcation. Cambridge: Cambridge University Press, 1981
7. Hethcote H W, van den Driessche P . Some epidemiologicalmodels with nonlinear incidence. J MathBiol, 1991, 29: 271–287. doi:10.1007/BF00160539
8. Hilker F M, Langlais M, Petrovskii S V, Malchow H . Adiffusive SI model with Allee effect and application to FIV. Math Biosci, 2007, 206(1): 61–80. doi:10.1016/j.mbs.2005.10.003
9. Li J Q, Zhou Y C, Wu J H, Ma Z . Complex dynamicsof a simple epidemic model with a nonlinear incidence. Discrete and Continuous Dynamical Systems-Series B, 2007, 8: 161–173
10. Liu W, Hethcote H W, Levin S A, Dynamical behavior of epidemiological model with nonlinearincidence rates. J Math Biol, 1987, 25: 359–380. doi:10.1007/BF00277162
11. Looss G, Adelmeyer M . Topic in Bifurcation Theoryand Application. Singapore/New York: World Scientific, 1998
12. Ruan S G, Wang W D . Dynamical behavior of anepidemic model with a nonlinear incidence rate. J Diff Equs, 2003, 18: 135–163. doi:10.1016/S0022-0396(02)00089-X
13. Saenz R A, Hethcote H W . Competing species modelswith an infectious disease. Math BiosciEng, 2006, 3(1): 219–235
14. van den Driessche P, Watmough J . A simple SIS epidemic modelwith a backward bifurcation. J Math Biol, 2000, 40: 525–540. doi:10.1007/s002850000032
15. Wei J J, Li M Y . Hopf bifurcation analysisin a delayed Nicholson blowflies equation. Nonlinear Anal, 2005, 60(7): 1351–1367. doi:10.1016/j.na.2003.04.002
16. Wei J J, Zou X F . Bifurcation analysis of apopulation model and the resulting SIS epidemic model with delay. J Comput Appl Math, 2006, 197(1): 169–187. doi:10.1016/j.cam.2005.10.037
17. Wu J H . Symmetric functional-differential equations and neural networks withmemory. Trans Amer Math Soc, 1998, 350(12): 4799–4838. doi:10.1090/S0002-9947-98-02083-2
AI Summary AI Mindmap
PDF(244 KB)

Accesses

Citations

Detail

Sections
Recommended

/