PDF(244 KB)
Backward/Hopf bifurcations in SIS models with
delayed nonlinear incidence rates
- LIU Yicheng1, DU Yimin2, WU Jianhong2
Author information
+
1.Department of Mathematics and Systems Science, College of Science, National University of Defense Technology; 2.Centre for Disease Modeling, York Institute of Health Research, York University;
Show less
History
+
Published |
05 Dec 2008 |
Issue Date |
05 Dec 2008 |
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Alexander M E, Moghadas S M, Rost G, Wu J H . A delay differentialmodel for pandemic influenza with antiviral treatment. Bulletin Math Biology, 2008, 70: 382–397. doi:10.1007/s11538-007-9257-2
2. Brauer F, van den Driessche P,Wu J . Mathematical Epidemiology. Berlin: Springer, 2008
3. Capasso V, Serio G . A generalization of the Kermack-McKendrickdeterministic epidemic model. Math Biosci, 1978, 42: 41–61. doi:10.1016/0025-5564(78)90006-8
4. Ghosh M, Chandra P, Sinha P, Shukla J B . Modellingthe spread of bacterial disease: effect of service providers froman environmentally degraded region. ApplMath Comput, 2005, 160(3): 615–647
5. Hale J K, Verduyn Lunel S M . Introduction to FunctionalDifferential Equations. Berlin: Springer-Verlag, 1993
6. Hassard B D, Kazarinoff N D, Wan Y H . Theory and Applications of Hopf Bifurcation. Cambridge: Cambridge University Press, 1981
7. Hethcote H W, van den Driessche P . Some epidemiologicalmodels with nonlinear incidence. J MathBiol, 1991, 29: 271–287. doi:10.1007/BF00160539
8. Hilker F M, Langlais M, Petrovskii S V, Malchow H . Adiffusive SI model with Allee effect and application to FIV. Math Biosci, 2007, 206(1): 61–80. doi:10.1016/j.mbs.2005.10.003
9. Li J Q, Zhou Y C, Wu J H, Ma Z . Complex dynamicsof a simple epidemic model with a nonlinear incidence. Discrete and Continuous Dynamical Systems-Series B, 2007, 8: 161–173
10. Liu W, Hethcote H W, Levin S A, Dynamical behavior of epidemiological model with nonlinearincidence rates. J Math Biol, 1987, 25: 359–380. doi:10.1007/BF00277162
11. Looss G, Adelmeyer M . Topic in Bifurcation Theoryand Application. Singapore/New York: World Scientific, 1998
12. Ruan S G, Wang W D . Dynamical behavior of anepidemic model with a nonlinear incidence rate. J Diff Equs, 2003, 18: 135–163. doi:10.1016/S0022-0396(02)00089-X
13. Saenz R A, Hethcote H W . Competing species modelswith an infectious disease. Math BiosciEng, 2006, 3(1): 219–235
14. van den Driessche P, Watmough J . A simple SIS epidemic modelwith a backward bifurcation. J Math Biol, 2000, 40: 525–540. doi:10.1007/s002850000032
15. Wei J J, Li M Y . Hopf bifurcation analysisin a delayed Nicholson blowflies equation. Nonlinear Anal, 2005, 60(7): 1351–1367. doi:10.1016/j.na.2003.04.002
16. Wei J J, Zou X F . Bifurcation analysis of apopulation model and the resulting SIS epidemic model with delay. J Comput Appl Math, 2006, 197(1): 169–187. doi:10.1016/j.cam.2005.10.037
17. Wu J H . Symmetric functional-differential equations and neural networks withmemory. Trans Amer Math Soc, 1998, 350(12): 4799–4838. doi:10.1090/S0002-9947-98-02083-2