Calabi-Yau metrics on compact Kähler manifolds with some divisors deleted

Chengjie Yu

Front. Math. China ›› 2008, Vol. 3 ›› Issue (4) : 589 -598.

PDF (147KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (4) : 589 -598. DOI: 10.1007/s11464-008-0035-8
Review Article

Calabi-Yau metrics on compact Kähler manifolds with some divisors deleted

Author information +
History +
PDF (147KB)

Abstract

In this article, we provide a systematic method to construct examples of complete Ricci flat metrics on ℂP2, with three lines in the general position deleted by Hsieh [Proc. AMS, 1995, 123: 1873–1877] and generalize them to higher dimensions. In addition, we further show that the examples of Hsieh are indeed all flat.

Keywords

Kähler manifold / Kähler-Einstein metric / complete flat metric

Cite this article

Download citation ▾
Chengjie Yu. Calabi-Yau metrics on compact Kähler manifolds with some divisors deleted. Front. Math. China, 2008, 3(4): 589-598 DOI:10.1007/s11464-008-0035-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheng S. Y., Yau S. T. On the existence of a complete Käahler metric on noncompact complex manifolds and the regularity of Fefferman′s equation. Comm Pure Appl Math, 1980, 33(4): 507-544.

[2]

Chern S. S., Chen W. H., Lam K. S. Lectures on Differential Geometry. Series on University Mathematics, 1, 1999, River Edge: World Scientific Publishing Co, Inc.

[3]

Demailly J. P. Demailly J. P., Peternell T., Tian G. L2 vanishing theorems for positive line bundles and adjunction theory. Transcendental Methods in Algebraic Geometry (Cetraro, 1994). Lecture Notes in Math, 1996, Berlin: Springer-Verlag, 1-97.

[4]

Hsieh C. C. Some complete Ricci-flat Kähler metrics in ℂP2. Proc Amer Math Soc, 1995, 123(6): 1873-1877.

[5]

Tian G., Yau S. T. Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry. Adv Ser Math Phys, 1987, Singapore: World Sci Publishing, 574-628.

[6]

Tian G., Yau S. T. Complete Kähler manifolds with zero Ricci curvature. I. J Amer Math Soc, 1990, 3(3): 579-609.

[7]

Tian G., Yau S. T. Complete Kähler manifolds with zero Ricci curvature. II. Invent Math, 1991, 106(1): 27-60.

[8]

Yau S. T. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Amp re equation. I. Comm Pure Appl Math, 1978, 31(3): 339-411.

[9]

Yau S. T. The role of partial differential equations in differential geometry. Proceedings of the International Congress of Mathematicians (Helsinki, 1978), 1980, Helsinki: Acad Sci Fennica, 237-250.

[10]

Yau S. T. A general Schwarz lemma for Kähler manifolds. Amer J Math, 1978, 100(1): 197-203.

[11]

Yau S. T. A splitting theorem and an algebraic geometric characterization of locally Hermitian symmetric spaces. Comm Anal Geom, 1993, 1(3-4): 473-486.

AI Summary AI Mindmap
PDF (147KB)

910

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/