Perturbation analysis for best approximation and the polar factor by subunitary matrices

LIU Xinguo1, WANG Weiguo1, WEI Yimin2

PDF(150 KB)
PDF(150 KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (4) : 523-534. DOI: 10.1007/s11464-008-0033-x

Perturbation analysis for best approximation and the polar factor by subunitary matrices

  • LIU Xinguo1, WANG Weiguo1, WEI Yimin2
Author information +
History +

Abstract

This paper is a continuation and improvement over the results of Laszkiewicz and Zietak [BIT, 2006, 46: 345–366], studying perturbation analysis for polar decomposition. Some basic properties of best approximation subunitary matrices are investigated in detail. The perturbation bounds of the polar factor are also derived.

Cite this article

Download citation ▾
LIU Xinguo, WANG Weiguo, WEI Yimin. Perturbation analysis for best approximation and the polar factor by subunitary matrices. Front. Math. China, 2008, 3(4): 523‒534 https://doi.org/10.1007/s11464-008-0033-x

References

1. Araki H, Yamagami S . An inequality for the Hilbert-Schmidtnorm. Comm Math Phys, 1981, 81: 89–98. doi:10.1007/BF01941801
2. Autonne L . Surles groupes linéaires, réel et orthogonaux. Bull Soc Math France, 1902, 30: 121–134
3. Barrlund A . Perturbationbounds on the polar decomposition. BIT, 1989, 30: 101–113. doi:10.1007/BF01932136
4. Chatelin F, Gratton S . On the condition numbersassociated with the polar factorization of a matrix. Numerical Linear Algebra with Appl, 2000, 7: 337–354. doi:10.1002/1099-1506(200007/08)7:5<337::AID-NLA200>3.0.CO;2-4
5. Chen C, Sun J G, Perturbation bounds for thepolar factors. J Comput Math, 1989, 7: 397–401
6. Chen X, Li W . Relative perturbation boundsfor the subunitary polar factor under unitarily invariant norms. Adv Math (in Chinese) 2006, 35: 178–184
7. Chen X, Li W, Sun W . Some new perturbation bounds for the generalized polardecomposition. BIT, 2004, 44: 237–244. doi:10.1023/B:BITN.0000039423.58964.e1
8. Cucker F, Diao H, Wei Y . Smoothed analysis of some condition numbers. Numer Linear Algebra Appl, 2006, 13: 71–84. doi:10.1002/nla.464
9. Golub G H, Van Loan C F . Matrix Computations. 3rd Ed. Baltimore: The Johns Hopkins University Press, 1996
10. Higham N J . Computing the polar decomposition-with applications. SIAM J Sci Stat Comput, 1986, 7: 1160–1174. doi:10.1137/0907079
11. Higham N J . The matrix sign decomposition and its relation to the polar decomposition. Linear Algebra Appl, 1994, 212/213: 3–20. doi:10.1016/0024-3795(94)90393-X
12. Higham N J, Mackey D S, Mackey N, et al.. Computing the polar decomposition and the matrixsign decomposition in matrix groups. SIAMJ Matrix Anal Appl, 2004, 25: 1178–1192. doi:10.1137/S0895479803426644
13. Higham N J, Schreiber R S . Fast polar decompositionof an arbitrary matrix. SIAM J Sci StatComput, 1990, 11: 648–655. doi:10.1137/0911038
14. Kittaneh F . Inequalitiesfor the Schatten p-norm, III. Comm Math Phys, 1986, 104: 307–310. doi:10.1007/BF01211597
15. Laszkiewicz B, Zietak K . Approximation of matricesand a family of Gander methods for polar decomposition. BIT, 2006, 46: 345–366. doi:10.1007/s10543-006-0053-4
16. Li R C . A perturbation bound for the generalized polar decomposition. BIT, 1993, 33: 304–308. doi:10.1007/BF01989752
17. Li R C . New perturbation bounds for the unitary polar factor. SIAM J Matrix Anal Appl, 1995, 16: 327–332. doi:10.1137/S0895479893256359
18. Li R C . Relative perturbation bounds for the unitary polar factor. BIT, 1997, 37: 67–75. doi:10.1007/BF02510173
19. Li R C . Relative perturbation bounds for positive polar factors of gradedmatrices. SIAM J Matrix Anal Appl, 2005, 27: 424–433. doi:10.1137/S0895479803437153
20. Li W . Somenew perturbation bounds for subunitary polar factors. Acta Math Sin (Engl Ser), 2005, 21: 1515–1520. doi:10.1007/s10114-004-0478-0
21. Li W, Sun W . Perturbation bounds of unitaryand subunitary polar factors. SIAM J MatrixAnal Appl, 2002, 23: 1183–1193. doi:10.1137/S0895479801394623
22. Li W, Sun W . New perturbation bounds forunitary polar factors. SIAM J Matrix AnalAppl, 2003, 25: 362–372. doi:10.1137/S0895479802413625
23. Li W, Sun W . Some remarks on the perturbationof polar decomposition for rectangular matrices. Numerical Linear Algebra Appl, 2006, 13: 327–338. doi:10.1002/nla.463
24. Maher P . Somematrix approximation problems arising from quantum chemistry. Proc Indian Natl Sci Acad, 1998, 64: 715–723
25. Mathias R . Perturbationbounds for the polar decomposition. SIAMJ Matrix Anal Appl, 1993, 14: 588–597. doi:10.1137/0614041
26. Mirsky L . Symmetricgauge functions and unitarily invariant norm. Quart J Math Oxford, 1960, 11: 50–59. doi:10.1093/qmath/11.1.50
27. Sun J G . Matrix Perturbation Analysis. Beijing: Science Press, 2nd Ed. 2001 (in Chinese)
28. Sun J G, Chen C H . Generalized polar decomposition. Math Numer Sinica, 1989, 11: 262–273 (in Chinese)
29. Wedin P . Perturbationtheory for the pseudoinverse. BIT, 1973, 13: 217–232. doi:10.1007/BF01933494
30. Wei M . Perturbationtheory for the Echart-Young-Mirsky theorem and the constrained totalleast squares problem. Linear Algebra Appl, 1998, 280: 267–287. doi:10.1016/S0024-3795(98)10018-6
AI Summary AI Mindmap
PDF(150 KB)

Accesses

Citations

Detail

Sections
Recommended

/