PDF(150 KB)
Perturbation analysis for best approximation
and the polar factor by subunitary matrices
- LIU Xinguo1, WANG Weiguo1, WEI Yimin2
Author information
+
1.School of Mathematical Sciences, Ocean University of China; 2.School of Mathematical Sciences, Fudan University
Show less
History
+
Published |
05 Dec 2008 |
Issue Date |
05 Dec 2008 |
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Araki H, Yamagami S . An inequality for the Hilbert-Schmidtnorm. Comm Math Phys, 1981, 81: 89–98. doi:10.1007/BF01941801
2. Autonne L . Surles groupes linéaires, réel et orthogonaux. Bull Soc Math France, 1902, 30: 121–134
3. Barrlund A . Perturbationbounds on the polar decomposition. BIT, 1989, 30: 101–113. doi:10.1007/BF01932136
4. Chatelin F, Gratton S . On the condition numbersassociated with the polar factorization of a matrix. Numerical Linear Algebra with Appl, 2000, 7: 337–354. doi:10.1002/1099-1506(200007/08)7:5<337::AID-NLA200>3.0.CO;2-4
5. Chen C, Sun J G, Perturbation bounds for thepolar factors. J Comput Math, 1989, 7: 397–401
6. Chen X, Li W . Relative perturbation boundsfor the subunitary polar factor under unitarily invariant norms. Adv Math (in Chinese) 2006, 35: 178–184
7. Chen X, Li W, Sun W . Some new perturbation bounds for the generalized polardecomposition. BIT, 2004, 44: 237–244. doi:10.1023/B:BITN.0000039423.58964.e1
8. Cucker F, Diao H, Wei Y . Smoothed analysis of some condition numbers. Numer Linear Algebra Appl, 2006, 13: 71–84. doi:10.1002/nla.464
9. Golub G H, Van Loan C F . Matrix Computations. 3rd Ed. Baltimore: The Johns Hopkins University Press, 1996
10. Higham N J . Computing the polar decomposition-with applications. SIAM J Sci Stat Comput, 1986, 7: 1160–1174. doi:10.1137/0907079
11. Higham N J . The matrix sign decomposition and its relation to the polar decomposition. Linear Algebra Appl, 1994, 212/213: 3–20. doi:10.1016/0024-3795(94)90393-X
12. Higham N J, Mackey D S, Mackey N, et al.. Computing the polar decomposition and the matrixsign decomposition in matrix groups. SIAMJ Matrix Anal Appl, 2004, 25: 1178–1192. doi:10.1137/S0895479803426644
13. Higham N J, Schreiber R S . Fast polar decompositionof an arbitrary matrix. SIAM J Sci StatComput, 1990, 11: 648–655. doi:10.1137/0911038
14. Kittaneh F . Inequalitiesfor the Schatten p-norm, III. Comm Math Phys, 1986, 104: 307–310. doi:10.1007/BF01211597
15. Laszkiewicz B, Zietak K . Approximation of matricesand a family of Gander methods for polar decomposition. BIT, 2006, 46: 345–366. doi:10.1007/s10543-006-0053-4
16. Li R C . A perturbation bound for the generalized polar decomposition. BIT, 1993, 33: 304–308. doi:10.1007/BF01989752
17. Li R C . New perturbation bounds for the unitary polar factor. SIAM J Matrix Anal Appl, 1995, 16: 327–332. doi:10.1137/S0895479893256359
18. Li R C . Relative perturbation bounds for the unitary polar factor. BIT, 1997, 37: 67–75. doi:10.1007/BF02510173
19. Li R C . Relative perturbation bounds for positive polar factors of gradedmatrices. SIAM J Matrix Anal Appl, 2005, 27: 424–433. doi:10.1137/S0895479803437153
20. Li W . Somenew perturbation bounds for subunitary polar factors. Acta Math Sin (Engl Ser), 2005, 21: 1515–1520. doi:10.1007/s10114-004-0478-0
21. Li W, Sun W . Perturbation bounds of unitaryand subunitary polar factors. SIAM J MatrixAnal Appl, 2002, 23: 1183–1193. doi:10.1137/S0895479801394623
22. Li W, Sun W . New perturbation bounds forunitary polar factors. SIAM J Matrix AnalAppl, 2003, 25: 362–372. doi:10.1137/S0895479802413625
23. Li W, Sun W . Some remarks on the perturbationof polar decomposition for rectangular matrices. Numerical Linear Algebra Appl, 2006, 13: 327–338. doi:10.1002/nla.463
24. Maher P . Somematrix approximation problems arising from quantum chemistry. Proc Indian Natl Sci Acad, 1998, 64: 715–723
25. Mathias R . Perturbationbounds for the polar decomposition. SIAMJ Matrix Anal Appl, 1993, 14: 588–597. doi:10.1137/0614041
26. Mirsky L . Symmetricgauge functions and unitarily invariant norm. Quart J Math Oxford, 1960, 11: 50–59. doi:10.1093/qmath/11.1.50
27. Sun J G . Matrix Perturbation Analysis. Beijing: Science Press, 2nd Ed. 2001 (in Chinese)
28. Sun J G, Chen C H . Generalized polar decomposition. Math Numer Sinica, 1989, 11: 262–273 (in Chinese)
29. Wedin P . Perturbationtheory for the pseudoinverse. BIT, 1973, 13: 217–232. doi:10.1007/BF01933494
30. Wei M . Perturbationtheory for the Echart-Young-Mirsky theorem and the constrained totalleast squares problem. Linear Algebra Appl, 1998, 280: 267–287. doi:10.1016/S0024-3795(98)10018-6