Attractor for nonlinear Schrödinger equation coupling with stochastic weakly damped, forced KdV equation

Boling Guo , Guolian Wang

Front. Math. China ›› 2008, Vol. 3 ›› Issue (4) : 495 -510.

PDF (193KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (4) : 495 -510. DOI: 10.1007/s11464-008-0032-y
Research Article

Attractor for nonlinear Schrödinger equation coupling with stochastic weakly damped, forced KdV equation

Author information +
History +
PDF (193KB)

Abstract

The nonlinear Schrödinger equation coupling with stochastic weakly damped, forced KdV equation with additive noise can be solved pathwise, and the unique solution generates a random dynamical system. Then we prove that the system possesses a global weak random attractor.

Keywords

Korteweg-de Vries (KdV) equation / nonlinear Schrödinger equation / additive noise

Cite this article

Download citation ▾
Boling Guo, Guolian Wang. Attractor for nonlinear Schrödinger equation coupling with stochastic weakly damped, forced KdV equation. Front. Math. China, 2008, 3(4): 495-510 DOI:10.1007/s11464-008-0032-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Appert K., Vaclavik J. Dynamics of coupled solitons. Physics Fluids, 1977, 20: 1845-1949.

[2]

Arnold L. Random Dynamical System, 1998, Berlin: Springer.

[3]

Bona J. L., Smith R. The initial-value problem for the Korteweg-de Vries equation, 1975, 278: 555-604.

[4]

Chang H. Y., Lien C., Sukarto S. Propagation of ion-acoustic solitons in a non-quiescent plasma. Plasma Phys Control Fusion, 1986, 28: 675-681.

[5]

Crauel H., Debussche A., Franco F. Random attractors. J Dyn Diff Eq, 1997, 9(2): 307-341.

[6]

Crauel H., Flaudoli F. Attractors for random dynamical systems. Probab Th Rel Fields, 1994, 100: 365-393.

[7]

De Bouard A., Debussche A. On the stochastic Korteweg-de Vries equation. J Funct Anal, 1998, 154: 215-251.

[8]

De Bouard A., Debussche A., Tsutsumi Y. White noise driven Korteweg-de Vries equation. J Funct Anal, 1999, 169: 532-558.

[9]

Ghidaglia J. M. Finite dimensional behavior for weakly damped driven Schrödinger equations. Ann Inst Henri Poincaré, Analyse Non Linéaire, 1988, 5(4): 365-405.

[10]

Gibbous J. On the theory of Langmuir solitons. J Plasma Phys, 1977, 17(2): 153-170.

[11]

Grimshaw R., Pelinovsky E., Tian X. Interaction of a solitary wave with an external force. Physica D, 1994, 77: 405-433.

[12]

Guo B., Chen F. Finite dimensional behavior of global attractors for weakly damped and forced KdV equations coupling with nonlinear Schrödinger equations. Nonlinear Analysis TMA, 1997, 29(5): 569-584.

[13]

Guo B, Shen L. The periodic initial value problem and the initial value problem for the system of KdV equation coupling with nonlinear Schrödinger equations. In: Proceedings of DD-3 Symposium, Chang Chun. 1982, 417–435

[14]

Herman R. The stochastic, damped Korteweg-de Vries equation. J Phys A, 1990, 23: 1063-1084.

[15]

Makhankov V. G. Dynamics of classical solitons. Physics Reports (Section C of Physics Letters), 1978, 35(1): 1-128.

[16]

Rosa R. The global attractor of a weakly damped, forced Korteweg-de Vries equation in H1(ℝ. Mat Contemp, 2000, 19: 129-152.

[17]

Scalerandi M., Romano A., Condat C. A. Korteweg-de Vries solitons under additive stochastic perturbations. Phys Rev E, 1998, 58: 4166-4173.

[18]

Temam R. Infinite-Dimensional Systems in Mechanics and Physics. Applied Math Sciences, 1988, New York: Springer.

[19]

Yang D. The asymptotic behavior of the stochastic Ginzburg-Landau equation with multiplicative noise. J Math Phys, 2004, 45(11): 4064-4076.

AI Summary AI Mindmap
PDF (193KB)

808

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/