Leibniz central extension on centerless twisted Schrödinger-Virasoro algebra

Junbo Li , Yucai Su

Front. Math. China ›› 2008, Vol. 3 ›› Issue (3) : 337 -344.

PDF (109KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (3) : 337 -344. DOI: 10.1007/s11464-008-0031-z
Article

Leibniz central extension on centerless twisted Schrödinger-Virasoro algebra

Author information +
History +
PDF (109KB)

Abstract

In this paper, we present all the Leibniz 2-cocycles of the centerless twisted Schrödinger-Virasoro algebra ℒ, which determine the second Leibniz cohomology group of ℒ.

Keywords

Schrödinger-Virasoro algebra / Leibniz 2-cocycle / Leibniz cohomology group

Cite this article

Download citation ▾
Junbo Li, Yucai Su. Leibniz central extension on centerless twisted Schrödinger-Virasoro algebra. Front. Math. China, 2008, 3(3): 337-344 DOI:10.1007/s11464-008-0031-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dokovic D., Zhao K. Derivations, isomorphisms and second cohomology of generalized Block algebras. Alg Colloq, 1996, 3: 245-272.

[2]

Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebra. J Algebra, 1988, 118: 33-45.

[3]

Henkel M. Schrödinger invariance and strongly anisotropic critical systems. J Stat Phys, 1994, 75: 1023-1029.

[4]

Henkel M. Phenomenology of local scale invariance: from conformal invariance to dynamical scaling. Nucl Phys B, 2002, 641: 405-410.

[5]

Henkel M., Unterberger J. Schrödinger invariance and space-time symmetries. Nucl Phys B, 2003, 660: 407-412.

[6]

Hilton P. J., Stammbach U. A Course in Homological Algebra, 1997 2nd ed. New York: Springer-Verlag.

[7]

Hu N., Pei Y., Liu D. A cohomological characterization of Leibniz central extensions of Lie algebras. Proc Amer Math Soc, 2008, 136: 437-447.

[8]

Kac V., Raina A. Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, 1987, Singapore: World Scientific.

[9]

Li J, Su Y Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49(5): 053512

[10]

Liu D., Hu N. Leibniz central extensions on some infinite-dimensional Lie Algebras. Comm Alg, 2004, 6: 2385-2405.

[11]

Loday J. Cut-product for Leibniz cohomology and dual Leibniz algebras. Math Scand, 1995, 77: 189-196.

[12]

Loday J., Pirashvili T. Universal enveloping algebras of Leibniz algebras and (co)-homology. Math Ann, 1993, 296: 139-158.

[13]

Roger C., Unterberger J. The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study. Ann Henri Poincaré, 2006, 7: 1477-1529.

[14]

Su Y. Harish-Chandra modules of the intermediate series over the high rank Virasoro algebras and high rank super-Virasoro algebras. J Math Phys, 1994, 35: 2013-2023.

[15]

Su Y. Simple modules over the high rank Virasoro algebras. Commun Alg, 2001, 29: 2067-2080.

[16]

Su Y. Classification of Harish-Chandra modules over the higher rank Virasoro algebras. Comm Math Phys, 2003, 240: 539-551.

[17]

Su Y., Zhao K. Generalized Virasoro and super-Virasoro algebras and modules of intermediate series. J Algebra, 2002, 252: 1-19.

[18]

Wang Q., Tan S. Leibniz central extension on a Block algebra. Alg Colloq, 2007, 4: 713-720.

AI Summary AI Mindmap
PDF (109KB)

959

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/