A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations

Ningning Yan , Zhaojie Zhou

Front. Math. China ›› 2008, Vol. 3 ›› Issue (3) : 415 -442.

PDF (990KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (3) : 415 -442. DOI: 10.1007/s11464-008-0029-6
Research Article

A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations

Author information +
History +
PDF (990KB)

Abstract

In this paper, we study a posteriori error estimates of the edge stabilization Galerkin method for the constrained optimal control problem governed by convection-dominated diffusion equations. The residual-type a posteriori error estimators yield both upper and lower bounds for control u measured in L2-norm and for state y and costate p measured in energy norm. Two numerical examples are presented to illustrate the effectiveness of the error estimators provided in this paper.

Keywords

Constrained optimal control problem / convection dominated diffusion equation / edge stabilization Galerkin method / a posteriori error estimate

Cite this article

Download citation ▾
Ningning Yan, Zhaojie Zhou. A posteriori error estimates of constrained optimal control problem governed by convection diffusion equations. Front. Math. China, 2008, 3(3): 415-442 DOI:10.1007/s11464-008-0029-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ainsworth M., Oden J. T. A Posteriori Error Estimation in Finite Element Analysis, 2000, New York: Wiley Interscience.

[2]

El Alaoui L., Ern A., Burman E. A priori and a posteriori analysis of nonconforming finite elements with face penalty for advection-diffusion equations. IMA J Numer Anal, 2006, 27(1): 151-171.

[3]

Bartlett R, Heinkenschloss M, Ridzal D, et al. Domain decomposition methods for advection dominated linear-quadratic elliptic optimal control problems. Technical Report SAND 2005–2895. Sandia National Laboratories, 2005

[4]

Becker R., Kapp H., Rannacher R. Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J Control Optim, 2000, 39: 113-132.

[5]

Becker R., Vexler B. Optimal control of the convection-diffusion equation using stabilized finite element methods. Numer Math, 2007, 106(3): 349-367.

[6]

Brezzi F., Russo A. Choosing bubbles for advection-diffusion problems. Math Models Meth Appl Sci, 1994, 4: 571-587.

[7]

Burman E., Hansbo P. Edge stabilization for Galerkin approximations of convectiondiffusion-reaction problems. Comput Methods Appl Mech Engrg, 2004, 193: 1437-1453.

[8]

Burman E., Hansbo P. Edge stabilization for Galerkin approximations of the generalized Stokes’ problem: A continuous interior penalty method. Comput Methods Appl Mech Engrg, 2006, 195(19–22): 2393-2410.

[9]

Burman E., Hansbo P. A stabilized non-conforming finite element method for incompressible flow. Comput Methods Appl Mech Engrg, 2006, 195: 2881-2899.

[10]

Ciarlet P. G. The Finite Element Method for Elliptic Problems, 1978, Amsterdam: North-Holland

[11]

Douglas J. Jr Dopont T. Glowinski R., Lions J. L. Interior penalty procedures for elliptic and parabolic Galerkin methods. Computing Methods in Applied Sciences, 1976, Berlin: Springer-Verlag, 207-216.

[12]

Fucik S., John O., Kufner A. Function Spaces, 1977, Leyden: Nordhoff.

[13]

Fursikov A. V. Optimal Control of Distributed Systems. Theory and Applications, 2000, Providence: American Mathematical Society.

[14]

Gaevskaya A., Hoppe R. H. W., Repin S. de Castro Bermúdez A., Gómez D., Quintela P. A posteriori estimates for cost functionals of optimal control problems. Numerical Mathematics and Advanced Applications, 2006, Berlin-Heidelberg-New York: Springer, 308-316.

[15]

Hoppe R. H. W., Iliash Y., Iyyunni C. A posteriori error estimates for adaptive finite element discretizations of boundary control problems. J Numer Math, 2006, 14: 57-82.

[16]

Huang Y Q, Li R, Liu W, et al. Efficient discretization to finite element approximation of constrained optimal control problems. (to appear)

[17]

Hughes T. J. R., Rooks A. Streamline upwind/Petrov Galerkin formulations for the convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Engrg, 1982, 54: 199-259.

[18]

Johnson C. Numerical Solution of Partial Differential Equations by the Finite Element Method, 1987, Cambridge: Cambridge Univ Press.

[19]

Johnson C., Pitkränta J. An analysis of the discontinuous Galerkin method for scalar hyperbolic equation. Math Comp, 1986, 46: 1-26.

[20]

Li R., Liu W., Ma H. Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J Control Optim, 2002, 41: 1321-1349.

[21]

Li R., Liu W., Yan N. A posteriori error estimates of recovery type for distributed convex optimal control problems. J Sci Comput, 2007, 33: 155-182.

[22]

Lions J. L. Optimal Control of Systems Governed by Partial Differential Equations, 1971, Berlin: Springer-Verlag.

[23]

Liu W., Ma H., Tang T. A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations. SIAM Numer Anal, 2004, 42: 1032-1061.

[24]

Liu W., Yan N. A posteriori error estimates for optimal boundary control. SIAM J Numer Anal, 2001, 39: 73-99.

[25]

Liu W., Yan N. A posteriori error estimates for distributed convex optimal control problems. Advances in Computational Mathematics, 2001, 15: 285-309.

[26]

Liu W., Yan N. A posteriori error estimates for control problems governed by stokes equations. SIAM J Numer Anal, 2002, 40: 1850-1869.

[27]

Liu W., Yan N. A posteriori estimates for optimal control problems governed by parabolic equations. Numer Math, 2003, 93: 497-521.

[28]

Navert U. A finite element method for convection diffusion problems. Ph D Thesis. Chalmers Inst of Tech, 1982

[29]

Ouazzi A, Turek S. Unified edge-oriented stabilization of noncomforming finite element methods for incompressible flow problems. Technical Report 284. Univ at Dortmund, 2005

[30]

Parra-Guevara D., Skiba Y. N. Elements of the mathematical modelling in the control of pollutants emissions. Ecological Modelling, 2003, 167: 263-275.

[31]

Roos H. G., Stynes M., Tobiska L. Numerical methods for singularly perturbed differential equations, 1996, Berlin: Springer-Verlag.

[32]

Scott Collis S, Heinkenschloss M. Analysis of the Streamline Upwind/Petrov Galerkin Method Applied to the Solution of Optimal Control Problems. CAAM TR02-01, March, 2002

[33]

Scott L. R., Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comp, 1990, 54: 483-493.

[34]

Verfürth R. A posteriori error estimators for convection-diffusion equations. Numer Math, 1998, 80: 641-663.

[35]

Yan N, Zhou Z. A priori and a posteriori error analysis of edge stabilization Galerkin method for the optimal control problem governed by convection dominated diffusion equation. Journal of Computational and Applied Mathematics (to appear)

[36]

Zhu J., Zeng Q. A mathematical theoretical frame for control of air pollution. Science in China, Ser D, 2002, 32: 864-87.

AI Summary AI Mindmap
PDF (990KB)

821

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/