Attractors for stochastic lattice dynamical systems with a multiplicative noise

CARABALLO Tomás1, LU Kening2

PDF(209 KB)
PDF(209 KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (3) : 317-335. DOI: 10.1007/s11464-008-0028-7

Attractors for stochastic lattice dynamical systems with a multiplicative noise

  • CARABALLO Tomás1, LU Kening2
Author information +
History +

Abstract

In this paper, we consider a stochastic lattice differential equation with diffusive nearest neighbor interaction, a dissipative nonlinear reaction term, and multiplicative white noise at each node. We prove the existence of a compact global random attractor which, pulled back, attracts tempered random bounded sets.

Cite this article

Download citation ▾
CARABALLO Tomás, LU Kening. Attractors for stochastic lattice dynamical systems with a multiplicative noise. Front. Math. China, 2008, 3(3): 317‒335 https://doi.org/10.1007/s11464-008-0028-7

References

1. Afraimovich V S, Nekorkin V I . Chaos of traveling wavesin a discrete chain of diffusively coupled maps. Int J Bifur Chaos, 1994, 4: 631–637. doi:10.1142/S0218127494000459
2. Arnold L . RandomDynamical Systems. Berlin: Springer-Verlag, 1998
3. Bates P W, Chmaj A . A discrete convolution modelfor phase transitions. Arch Ration MechAnal, 1999, 150(4): 281–305. doi:10.1007/s002050050189
4. Bates P W, Lisei H, Lu K . Attractors for stochastic lattice dynamical systems. Stochastics & Dynamics, 2006, 6(1): 1–21. doi:10.1142/S0219493706001621
5. Bates P W, Lu K, Wang B . Attractors for lattice dynamical systems. Int J Bifur Chaos, 2001, 11: 143–153. doi:10.1142/S0218127401002031
6. Bell J . Somethreshhold results for models of myelinated nerves. Mathematical Biosciences, 1981, 54: 181–190. doi:10.1016/0025‐5564(81)90085‐7
7. Bell J, Cosner C . Threshold behaviour and propagationfor nonlinear differentialdifference systems motivated by modelingmyelinated axons. Quarterly Appl Math, 1984, 42: 1–14
8. Caraballo T, Kloeden P E, Schmalfuß B . Exponentially stable stationary solutionsfor stochastic evolution equations and their perturbation. Applied Mathematics and Optimization, 2004, 50: 183–207. doi:10.1007/s00245‐004‐0802‐1
9. Caraballo T, Lukaszewicz G, Real J . Pullback attractors for asymptotically compact nonautonomousdynamical systems. Nonlinear Analysis TMA, 2006, 64(3): 484–498. doi:10.1016/j.na.2005.03.111
10. Chow S-N, Mallet-Paret J . Pattern formulation and spatialchaos in lattice dynamical systems: I. IEEE Trans Circuits Syst, 1995, 42: 746–751. doi:10.1109/81.473583
11. Chow S-N, Mallet-Paret J, Shen W . Traveling waves in lattice dynamical systems. J Diff Eq, 1998, 149: 248–291. doi:10.1006/jdeq.1998.3478
12. Chow S-N, Mallet-Paret J, Van Vleck E S . Pattern formation and spatial chaos in spatially discreteevolution equations. Random ComputationalDynamics, 1996, 4: 109–178
13. Chow S-N, Shen W . Dynamics in a discrete Nagumoequation: Spatial topological chaos. SIAMJ Appl Math, 1995, 55: 1764–1781. doi:10.1137/S0036139994261757
14. Chua L O, Roska T . The CNN paradigm. IEEE Trans Circuits Syst, 1993, 40: 147–156
15. Chua L O, Yang L . Cellular neural networks:Theory. IEEE Trans Circuits Syst, 1988, 35: 1257–1272. doi:10.1109/31.7600
16. Chua L O, Yang L . Cellular neural networks:Applications. IEEE Trans Circuits Syst, 1988, 35: 1273–1290. doi:10.1109/31.7601
17. Crauel H . Randompoint attractors versus random set attractors. J London Math Soc, 2002, 63: 413–427. doi:10.1017/S0024610700001915
18. Crauel H, Debussche A, Flandoli F . Random Attractors. J Dyn DiffEq, 1997, 9: 307–341. doi:10.1007/BF02219225
19. Crauel H, Flandoli F . Attractors for random dynamicalsystems. Probab Theory Relat Fields, 1994, 100: 365–393. doi:10.1007/BF01193705
20. Dogaru R, Chua L O . Edge of chaos and local activitydomain of Fitz-Hugh-Nagumo equation. IntJ Bifurcation and Chaos, 1988, 8: 211–257
21. Erneux T, Nicolis G . Propagating waves in discretebistable reaction diffusion systems. PhysicaD, 1993, 67: 237–244. doi:10.1016/0167‐2789(93)90208‐I
22. Flandoli F, Lisei H . Stationary conjugation offlows for parabolic SPDEs with multiplicative noise and some applications. Stoch Anal Appl, 2004, 221385–1420. doi:10.1081/SAP‐200029481
23. Flandoli F, Schmalfuß B . Random attractors for the3D stochastic Navier-Stokes equation with multiplicative noise. Stochastics and Stochastic Rep, 1996, 59: 21–45
24. Imkeller P, Schmalfuß B . The conjugacy of stochasticand random differential equations and the existence of global attractors. J Dyn Diff Eq, 2001, 13: 215–249. doi:10.1023/A:1016673307045
25. Kapval R . Discretemodels for chemically reacting systems. J Math Chem, 1991, 6: 113–163. doi:10.1007/BF01192578
26. Keener J P . Propagation and its failure in coupled systems of discrete excitablecells. SIAM J Appl Math, 1987, 47: 556–572. doi:10.1137/0147038
27. Keener J P . The effects of discrete gap junction coupling on propagation in myocardium. J Theor Biol, 1991, 148: 49–82. doi:10.1016/S0022‐5193(05)80465‐5
28. Laplante J P, Erneux T . Propagating failure in arraysof coupled bistable chemical reactors. J Phys Chem, 1992, 96: 4931–4934. doi:10.1021/j100191a038
29. Mallet-Paret J . Theglobal structure of traveling waves in spatially discrete dynamicalsystems. J Dynam Differential Equations, 1999, 11(1): 49–127. doi:10.1023/A:1021841618074
30. Pérez-Muñuzuri A, Pérez-Muñuzuri V, Pérez-Villar V, et al.. Spiralwaves on a 2-d array of nonlinear circuits. IEEE Trans Circuits Syst, 1993, 40: 872–877. doi:10.1109/81.251828
31. Rashevsky N . MathematicalBiophysics. Vol 1. New York: Dover Publications,Inc, 1960
32. Ruelle D . Characteristicexponents for a viscous fluid subjected to time dependent forces. Commu Math Phys, 1984, 93: 285–300. doi:10.1007/BF01258529
33. Scheutzow M . Comparisonof various concepts of a random attractor: A case study. Arch Math, 2002, 78: 233–240. doi:10.1007/s00013‐002‐8241‐1
34. Scott A C . Analysis of a myelinated nerve model. Bull Math Biophys, 1964, 26: 247–254. doi:10.1007/BF02479046
35. Shen W . Liftedlattices, hyperbolic structures, and topological disorders in coupledmap lattices. SIAM J Appl Math, 1996, 56: 1379–1399. doi:10.1137/S0036139995282670
36. Zinner B . Existenceof traveling wavefront solutions for the discrete Nagumo equation. J Diff Eq, 1992, 96: 1–27. doi:10.1016/0022‐0396(92)90142‐A
AI Summary AI Mindmap
PDF(209 KB)

Accesses

Citations

Detail

Sections
Recommended

/