Construct irreducible representations of quantum groups (())

TANG Xin

PDF(249 KB)
PDF(249 KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (3) : 371-397. DOI: 10.1007/s11464-008-0027-8

Construct irreducible representations of quantum groups (())

  • TANG Xin
Author information +
History +

Abstract

In this paper, we construct families of irreducible representations for a class of quantum groups Uq(fm(K)). First, we give a natural construction of irreducible weight representations for Uq(fm(K)) using methods in spectral theory developed by Rosenberg. Second, we study the Whittaker model for the center of Uq(fm(K)). As a result, the structure of Whittaker representations is determined, and all irreducible Whittaker representations are explicitly constructed. Finally, we prove that the annihilator of a Whittaker representation is centrally generated.

Cite this article

Download citation ▾
TANG Xin. Construct irreducible representations of quantum groups (()). Front. Math. China, 2008, 3(3): 371‒397 https://doi.org/10.1007/s11464-008-0027-8

References

1. Bavula V V . Generalized Weyl algebras and their representations. Algebra i Analiz, 1992, 4(1): 75–97; Englishtransl in: St Petersburg Math J, 1993, 4: 71–93
2. Dixmier J . EnvelopingAlgebras. Amsterdam: North-Holland, 1977
3. Drinfeld V G . Hopf algebras and the quantum Yang-Baxter equations. Soviet Math Dokll, 1985, 32: 254–258
4. Gabriel P . Descategories abeliennes. Bull Soc Math France, 1962, 90: 323–449
5. Jantzen J C . Lectures on Quantum Groups. Graduate Studiesin Math, Vol 6. Providence: Amer Math Soc, 1993
6. Ji Q, Wang D, Zhou X . Finite dimensional representations of quantum groups Uq(f(K)). East-West J Math, 2000, 2(2): 201–213
7. Jing N, Zhang J . Quantum Weyl algebras anddeformations of U(G). Pacific JMath, 1995, 171(2): 437–454
8. Kostant B . OnWhittaker vectors and representation theory. Invent Math, 1978, 48(2): 101–184. doi:10.1007/BF01390249
9. Lynch T . GeneralizedWhittaker vectors and representation theory. Dissertation for the Ph D Degree. Cambridge: MIT, 1979
10. Macdowell E . Onmodules induced from Whittaker modules. J Algebra, 1985, 96: 161–177. doi:10.1016/0021‐8693(85)90044‐4
11. Ondrus M . Whittakermodules for Uq(sl2). J Algebra, 2005, 289: 192–213. doi:10.1016/j.jalgebra.2005.03.018
12. Rosenberg A . NoncommutativeAlgebraic Geometry and Representations of Quantized Algebras. Mathematics and Its Applications, Vol 330. Dordrecht: Kluwer Academic Publishers, 1995
13. Sevostyanov A . Quantumdeformation of Whittaker modules and Toda lattice. Duke Math J, 2000, 204(1): 211–238. doi:10.1215/S0012‐7094‐00‐10522‐4
14. Smith S P . A class of algebras similar to the enveloping algebra of sl2. Trans AMS, 1990, 322: 285–314. doi:10.2307/2001532
AI Summary AI Mindmap
PDF(249 KB)

Accesses

Citations

Detail

Sections
Recommended

/