Construct irreducible representations of quantum groups Uq(ƒm(K))

Xin Tang

Front. Math. China ›› 2008, Vol. 3 ›› Issue (3) : 371-397.

PDF(249 KB)
PDF(249 KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (3) : 371-397. DOI: 10.1007/s11464-008-0027-8
Research Article

Construct irreducible representations of quantum groups Uq(ƒm(K))

Author information +
History +

Abstract

In this paper, we construct families of irreducible representations for a class of quantum groups Uq(ƒm(K)). First, we give a natural construction of irreducible weight representations for Uq(ƒm(K)) using methods in spectral theory developed by Rosenberg. Second, we study the Whittaker model for the center of Uq(ƒm(K)). As a result, the structure of Whittaker representations is determined, and all irreducible Whittaker representations are explicitly constructed. Finally, we prove that the annihilator of a Whittaker representation is centrally generated.

Keywords

Hyperbolic algebra / spectral theory / Whittaker modules / quantum group

Cite this article

Download citation ▾
Xin Tang. Construct irreducible representations of quantum groups Uq(ƒm(K)). Front. Math. China, 2008, 3(3): 371‒397 https://doi.org/10.1007/s11464-008-0027-8

References

[1.]
Bavula V. V. Generalized Weyl algebras and their representations. Algebra i Analiz, 1992, 4(1): 75-97 English transl in: St Petersburg Math J, 1993, 4: 71–93
[2.]
Dixmier J. Enveloping Algebras, 1977, Amsterdam: North-Holland.
[3.]
Drinfeld V. G. Hopf algebras and the quantum Yang-Baxter equations. Soviet Math Dokll, 1985, 32: 254-258.
[4.]
Gabriel P. Des categories abeliennes. Bull Soc Math France, 1962, 90: 323-449.
[5.]
Jantzen J. C. Lectures on Quantum Groups. Graduate Studies in Math, 1993, Providence: Amer Math Soc.
[6.]
Ji Q., Wang D., Zhou X. Finite dimensional representations of quantum groups Uq(ƒ(K)). East-West J Math, 2000, 2(2): 201-213.
[7.]
Jing N., Zhang J. Quantum Weyl algebras and deformations of U(G). Pacific J Math, 1995, 171(2): 437-454.
[8.]
Kostant B. On Whittaker vectors and representation theory. Invent Math, 1978, 48(2): 101-184.
CrossRef Google scholar
[9.]
Lynch T. Generalized Whittaker vectors and representation theory. Dissertation for the Ph D Degree, 1979, Cambridge: MIT.
[10.]
Macdowell E. On modules induced from Whittaker modules. J Algebra, 1985, 96: 161-177.
CrossRef Google scholar
[11.]
Ondrus M. Whittaker modules for Uq(sl2). J Algebra, 2005, 289: 192-213.
CrossRef Google scholar
[12.]
Rosenberg A. Noncommutative Algebraic Geometry and Representations of Quantized Algebras. Mathematics and Its Applications, 1995, Dordrecht: Kluwer Academic Publishers.
[13.]
Sevostyanov A. Quantum deformation of Whittaker modules and Toda lattice. Duke Math J, 2000, 204(1): 211-238.
CrossRef Google scholar
[14.]
Smith S. P. A class of algebras similar to the enveloping algebra of sl2. Trans AMS, 1990, 322: 285-314.
CrossRef Google scholar
AI Summary AI Mindmap
PDF(249 KB)

Accesses

Citations

Detail

Sections
Recommended

/