Asymptotics for solutions of a defective renewal equation with applications

Chuancun Yin, Xianghua Zhao

Front. Math. China ›› 2008, Vol. 3 ›› Issue (3) : 443-459.

PDF(165 KB)
PDF(165 KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (3) : 443-459. DOI: 10.1007/s11464-008-0024-y
Research Article

Asymptotics for solutions of a defective renewal equation with applications

Author information +
History +

Abstract

In this paper, we derive non-exponential asymptotic forms for solutions of defective renewal equations. These include as special cases asymptotics for compound geometric distribution and the convolution of a compound geometric distribution with a distribution function. As applications of these results, we study the Gerber-Shiu discounted penalty function in the classical risk model and the reliability of a two-unit cold standby system in reliability theory.

Keywords

Asymptotics / defective renewal equation / Gerber-Shiu discounted penalty function / heavy-tailed distribution / ruin theory / subexponential density / reliability theory

Cite this article

Download citation ▾
Chuancun Yin, Xianghua Zhao. Asymptotics for solutions of a defective renewal equation with applications. Front. Math. China, 2008, 3(3): 443‒459 https://doi.org/10.1007/s11464-008-0024-y

References

[1.]
Asmussen S. A probabilistic look at the Wiener-Hopf equation. SIAM Review, 1998, 40: 189-201.
CrossRef Google scholar
[2.]
Asmussen S., Foss S., Korshunov D. Asymptotics for sums of random variables with local subexponential behaviour. J Theor Probab, 2003, 16: 489-518.
CrossRef Google scholar
[3.]
Cai J., Garrido J. Chaubed Y. P. Asymptotic forms and tails of convolutions of compound geometric distributions, with applications. Recent Advances in Statistical Methods, 1999, London: Imperial College Press, 114-131.
[4.]
Cai J., Tang Q. H. On max-sum equivalence and convolution closure of heavy-tailed distributions and their applications. J Appl Probab, 2004, 41: 117-130.
CrossRef Google scholar
[5.]
Cheng K., Wang W. Y. Approximations of a two-unit cold standby system’s reliability behavior. Microelectronics and Reliability, 1996, 36(5): 627-630.
CrossRef Google scholar
[6.]
Cheng Y., Tang Q. H. Moments of the surplus before ruin and the deficit at ruin in the Erlang(2) risk process. North American Actuar J, 2003, 7: 1-12.
[7.]
Cline D. B. H. Convolutions of distributions with exponential and subexponential tails. J Austral Math Soc (Ser A), 1987, 43: 347-365.
CrossRef Google scholar
[8.]
Embrechts P., Goldie C. M. On convolution tails. Stoch Proc Appl, 1982, 13: 263-278.
CrossRef Google scholar
[9.]
Embrechts P., Goldie C. M., Veraverbeke N. Subexponentiality and infinite divisibility. Z Wahrscheinlichkeitstheorie und verw Gebiete, 1979, 49: 335-347.
CrossRef Google scholar
[10.]
Embrechts P., Klüppelberg C., Mikosch T. Modelling Extremal Events for Insurance and Finance, 1997, New York: Springer.
[11.]
Embrechts P., Veraverbeke N. Estimates for the probability of ruin with special emphasis on the possibility of large claims. Insurance Math Econom, 1982, 1: 55-72.
CrossRef Google scholar
[12.]
Feller W. An Introduction to Probability Theory and Its Applications, 1971 2nd ed. New York: John Wiley.
[13.]
Gerber H. An Introduction to Mathematical Risk Theory, 1979, Philadelphia: University of Pennsylvania.
[14.]
Gerber H. U., Shiu E. S. W. On the time value of ruin. North American Actuar J, 1998, 2: 48-72.
[15.]
Gerber H. U., Shiu E. S. W. The time value of ruin in a Sparre Andersen model. North American Actuar J, 2005, 9: 49-69.
[16.]
Klüppelberg C. On subexponential distributions and integrated tails. J Appl Probab, 1988, 5: 132-141.
CrossRef Google scholar
[17.]
Klüppelberg C. Subexponential distributions and characterizations of related classes. Probab Theory Relat Fields, 1989, 82: 259-269.
CrossRef Google scholar
[18.]
Li S. M., Garrido J. On ruin for the Erlang(n) risk process. Insurance Math Econom, 2004, 34: 391-408.
CrossRef Google scholar
[19.]
Rolski T., Schmidli H., Schmidt V. Stochastic Processes for Insurance and Finance, 1999, New York: Wiley.
[20.]
Ross S. Bounds on the delay distribution in GI/G/1 queues. J Appl Probab, 1974, 11: 417-421.
CrossRef Google scholar
[21.]
Ross S. Stochastic Processes, 1996 2nd ed. New York: Wiley.
[22.]
Willmot G., Cai J., Lin X. S. Lundberg inequalities for renewal equations. Adv Appl Probab, 2001, 33: 674-689.
CrossRef Google scholar
[23.]
Yin C. C. A local limit theorem for the probability of ruin. Sci Chin, Ser A, 2004, 47(5): 711-721.
CrossRef Google scholar
[24.]
Yin C. C., Zhao J. S. Non-exponential asymptotics for the solutions of renewal equations with applications. J Appl Probab, 2006, 43(3): 815-824.
CrossRef Google scholar
AI Summary AI Mindmap
PDF(165 KB)

Accesses

Citations

Detail

Sections
Recommended

/