Complete rank theorem of advanced calculus and singularities of bounded linear operators

MA Jipu

PDF(152 KB)
PDF(152 KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (2) : 305-316. DOI: 10.1007/s11464-008-0019-8

Complete rank theorem of advanced calculus and singularities of bounded linear operators

  • MA Jipu
Author information +
History +

Abstract

Let E and F be Banach spaces, f : UEF be a map of Cr (r ≥ 1), x0 ? U, and f′(x0) denote the Frechet differential of f at x0. Suppose that f′(x0) is double split, Rank(f′(x0)) = ∞, dimN(f′(x0)) > 0 and codimR(f′(x0)) > 0. The rank theorem in advanced calculus asks to answer what properties of f ensure that f(x) is conjugate to f′(x0) near x0. We have proved that the conclusion of the theorem is equivalent to one kind of singularities for bounded linear operators, i.e., x0 is a locally fine point for f′(x) or generalized regular point of f(x); so, a complete rank theorem in advanced calculus is established, i.e., a sufficient and necessary condition such that the conclusion of the theorem to be held is given.

Cite this article

Download citation ▾
MA Jipu. Complete rank theorem of advanced calculus and singularities of bounded linear operators. Front. Math. China, 2008, 3(2): 305‒316 https://doi.org/10.1007/s11464-008-0019-8

References

1. Abraham R Marsden J E Rataiu T Tensor Analysis and Its ApplicationsBerlinSpringer-Verlag 1990
2. Berger M Nonlinearityand Functional AnalysisNew YorkAcademic Press 1976
3. Cao Weiping Ma Jipu The local linearization theoremof nonlinear mapsJournal of Nanjing UniversityMath 1996 13210213
4. Chen G L Xue Y F Perturbation analysis for theoperator equation Tx = b in Banach spacesJ Math Anl Appl 1997 212107125. doi:10.1006/jmaa.1997.5482
5. Huang Qianlian Ma Jipu Perturbation analysis of generalizedinverses of linear operators in Banach spacesLinear Algebra Appl 2004 389335364. doi:10.1016/j.laa.2004.04.011
6. Ma Jipu (1.2) inverses of operators between Banach spaces and local conjugacytheoremChinese Annals of Math, Ser B 1999 205762. doi:10.1142/S0252959999000084
7. Ma Jipu Rank theorem of operators between Banach spacesScience in China, Ser A 2000 4315. doi:10.1007/BF02881711
8. Ma Jipu Local conjugecy theorem, rank theorems in advanced calculus and ageneralized principle for constructing Banach manifoldsScience in China, Ser A 2000 4312331237. doi:10.1007/BF02880060
9. Ma Jipu A generalized preimage theorem in global analysisScience in China, Ser A 2001 44299303. doi:10.1007/BF02878710
10. Ma Jipu A generalized transversality in global analysisAnalysis in Theory and Applications 2004 20391394. doi:10.1007/BF02835232
11. Ma Jipu A rank theorem of operators between Banach spacesFront Math China 2006 1(1)138143. doi:10.1007/s11464‐005‐0018‐y
12. Ma Jipu Three classes of smooth Banach submanifolds in B(E, F)Front Math China 2006 1(3)476479. doi:10.1007/s11464‐006‐0020‐z
13. Ma Jipu Topological and geometric propertyofmatrix algebraAnalysis in Theory and Applications 2007 23198200. doi:10.1007/s10496‐007‐0196‐4
14. Nashed M Z GeneralizedInverses and ApplicationsNew YorkJohn Wiley and Sons 1976
15. Nashed M Z Chen X Convergence of Newton-likemethods for singular equations using outer inversesNumer Math 1993 66235257. doi:10.1007/BF01385696
16. Penrose R A generalizedinverse for matricesProc Cambridge PhilosSoc 1955 52406413
17. Zeilder A E NonlinearFunctional Analysis and Its Applications. IV. Applications to MathematicalPhysicsNew YorkSpringer-Verlag 1988
AI Summary AI Mindmap
PDF(152 KB)

Accesses

Citations

Detail

Sections
Recommended

/