PDF(202 KB)
Collection of problems proposed at International
Conference on Variational Methods
Author information
+
Organizing Committee of International Conference on Variational Methods Chern Institute of Mathematics, Nankai University
Show less
History
+
Published |
05 Jun 2008 |
Issue Date |
05 Jun 2008 |
This collection of problems is based on the Problem Section held on May 24, 2007 during the International Conference on Variational Methods. These problems reflect various aspects of variational methods and are due to Professors Victor Bangert, Alain Chenciner, Ivar Ekeland, Nassif Ghoussoub, Zhaoli Liu, Paul Rabinowitz and Hans-Bert Rademacher.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Bolsinov A V Taimanov I A An example of an integrablegeodesic flow with positive topological entropyUspekhi Mat Nauk 1999 54157158translation in Russian Math Surveys 1999 54833834
2. Bolsinov A V Taimanov I A Integrable geodesic flows withpositive topological entropyInvent Math 2000 140639650. doi:10.1007/s002220000066
3. Butler L A newclass of homogeneous manifolds with Liouville-integrable geodesicflowsC R Math Rep Acad Sci Can 1999 21127131
4. Butler L Newexamples of integrable geodesic flowsAsianJ Math 2000 4515526
5. Kolokol'tsov V N Geodesicflows on two-dimensional manifolds with an additional first integralthat is polynomial in the velocitiesIzvAkad Nauk SSR, Ser Mat 1982 469941010translation in Math USSR Izv 1983 21291306
6. Kozlov V V Topologicalobstructions to the integrability of natural mechanical systemsDokl Akad Nauk SSR 1979 24912991302translation in Soviet Math Dokl 1979 2014131415
7. Kozlov V V Integrabilityand non-integrability in Hamiltonian dynamicsUspekhi Mat Nauk 1983 38367translation in Russian Math Surveys 1983 38176
8. Paternain G P Onthe topology of manifolds with completely integrable geodesic flowsErg Th Dynam Sys 1992 12109121
9. Paternain G P Onthe topology of manifolds with completely integrable geodesic flows.IIJ Geom Phys 1994 13289298. doi:10.1016/0393‐0440(94)90036‐1
10. Taimanov I A Topologicalobstructions to integrability of geodesic flows on non-simply connectedmanifoldsIzv Akad Nauk SSSR, Ser Mat 1987 51429435translation in Math USSR Izv 1988 30403409
11. Taimanov I A Topologicalproperties of integrable geodesic flowsMat Zametki 1988 44283284(in Russian)
12. Taimanov I A Topologyof Riemannian manifolds with integrable geodesic flowsTrudy Mat Inst Steklov 1994 205150163translation in Proc Steklov Inst Math 1995 205139150
13. Chenciner A Montgomery R A remarkable periodic solutionof the three-body problem in the case of equal massesAnn of Math 2000 152881901. doi:10.2307/2661357
14. Chenciner A Venturelli A Minima de I'integrale d'actiondu probleme newtonien de 4 corps de masses egales d ans r 3: orbites “hip-hop”Celestial Mech Dvnam Astnonom 2001 77139152. doi:10.1023/A:1008381001328
15. Bouchard B Ekeland I Touzi N On the Malliavin approach to Monte Carlo approximationof conditional expectationsFinance andStochastics 2004 84571. doi:10.1007/s00780‐003‐0109‐0
16. Ekeland I Nirenberg L Regularity in an unusual variationalproblemJournal of Mathematical Fluid Mechanics 2005 7332348. doi:10.1007/s00021‐005‐0163‐9
17. Moser J Stableand Random Motions in Dynamical Systems: With Special Emphasis onCelestial MechanicsPrinceton Landmarksin Mathematics and PhysicsPrincetonPrinceton University Press2001
18. Benci V Fortunato D A Birkhoff-Lewis type theoremfor a class of Hamiltonian systemsManuscriptaMathematica 1984 59441456. doi:10.1007/BF01170847
19. Burdeau J Romano M Un theoreme de Birkhoff-Lewispour une classe de systemes hamiltoniensCRAS Paris 1994 31810271030
20. Esposito P Ghoussoub N Guo Y Compactness along the branch of semi-stable and unstablesolutions for an elliptic problem with a singular nonlinearityComm Pure Appl Math 2007 6017311768. doi:10.1002/cpa.20189
21. Ghoussoub N Guo Y On the partial differentialequations of electrostatic MEMS devices: Stationary caseSIAM J Math Anal 2007 3814231449. doi:10.1137/050647803
22. Ghoussoub N Guo Y On the partial differentialequations of electrostatic MEMS devices II: Dynamic caseNonlinear Diff Eqns Appl (inpress)
23. Ghoussoub N Guo Y Estimates for the quenchingtime of a parabolic equation modeling electrostatic MEMS (in press)
24. Alves C Soares S On the location and profileof spike-layer nodal solutions to non-linear Schrödinger equations.J Math Anal Appl 2004 296(2)563577. doi:10.1016/j.jmaa.2004.04.022
25. Amann H Zehnder E Nontrivial solutions for aclass of nonresonance problems and applications to nonlinear differentialequationsAnn Scuola Norm Sup Pisa Cl Sci 1980 7539603
26. Chang K -C Infinite Dimensional Morse Theory and Multiple Solution ProblemsBostonBirkhäuser 1993
27. del Pino M Felmer P Local mountain passes for semilinearelliptic problems in unbounded domainsCalcVar PDE 1996 4121137
28. Rabinowitz P H Periodicsolutions of Hamiltonian systems.Comm PureAppl Math 1978 31157184. doi:10.1002/cpa.3160310203
29. Weinstein A Periodicorbits for convex Hamiltonian systemsAnnof Math 1978 108507518. doi:10.2307/1971185
30. Ekeland I Hofer H Convex Hamiltonian energy surfacesand their closed trajectoriesComm MathPhys 1987 113419467. doi:10.1007/BF01221255
31. Hofer H Wysocki K Zehnder E The dynamics on three-dimensional strictly convex energysurfacesAnn of Math 1998 148197289. doi:10.2307/120994
32. Long Y Zhu C Closed characteristics on compactconvex hypersurfaces in R2nAnnals of Math 2002 155317368. doi:10.2307/3062120
33. Wang W Hu X Long Y Resonance identity, stability and multiplicity of closedcharacteristics on compact convex hypersurfacesDuke Math J 2007 139411462. doi:10.1215/S0012‐7094‐07‐13931‐0
34. Bangert V Onthe existence of closed geodesics on two-spheresIntern J Math 1993 4110. doi:10.1142/S0129167X93000029
35. Bao D Chern S -S Shen Z An Introduction to Riemann-Finsler GeometryGrad Texts in Math, Vol 200NewYorkSpringer-Verlag 2000
36. Bao D Robles C Shen Z Zermelo navigation on Riemannian manifoldsJ Diff Geom 2004 66391449
37. Bryant R Someremarks on Finsler manifolds with constant flag curvatureHouston J Math 2002 28221262
38. Bryant R Geodesicallyreversible Finsler 2-spheres of constant curvatureIn: Griffiths P AInspired by S. S. Chern-AMemorial Volume in Honour of a Great Mathematician. Nankai Tractsin Math, Vol 11SingaporeWorld Scientific 2006 95112
39. Foulon P Curvatureand global rigidity in Finsler manifoldsHouston J Math 2002 28263292
40. Franks J Geodesicson S2 and periodic points of annulus homeomorphismsInvent Math 1992 108403418. doi:10.1007/BF02100612
41. Hingston N Onthe growth of the number of closed geodesics on the two-sphereIntern Math Res Notices 1993 (9)253262
42. Long L Multiplicityand stability of closed geodesics on Finsler 2-spheresJ Eur Math Soc 2006 8341353
43. Rademacher H B Asphere theorem for non-reversible Finsler metricsMath Ann 2004 328373387. doi:10.1007/s00208‐003‐0485‐y
44. Shen Z Lectureson Finsler GeometrySingaporeWorld Scientific 2001
45. Ziller W Geometryof the Katok examplesErgod Th & DynSyst 1982 3135157