Sign-changing solutions of nonlinear elliptic equations

Zhaoli Liu, Zhi-Qiang Wang

Front. Math. China ›› 2008, Vol. 3 ›› Issue (2) : 221-238.

PDF(216 KB)
Front. Math. China All Journals
PDF(216 KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (2) : 221-238. DOI: 10.1007/s11464-008-0014-0
Survey Article

Sign-changing solutions of nonlinear elliptic equations

Author information +
History +

Abstract

In this survey article, we recall some known results on existence and multiplicity of sign-changing solutions of elliptic equations. Methods for obtaining sign-changing solutions developed in the last two decades will also be briefly revisited.

Keywords

Elliptic equation / invariant set / sign-changing solution

Cite this article

Download citation ▾
Zhaoli Liu, Zhi-Qiang Wang. Sign-changing solutions of nonlinear elliptic equations. Front. Math. China, 2008, 3(2): 221‒238 https://doi.org/10.1007/s11464-008-0014-0
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Ackermann N, Bartsch T, Kaplický P, et al. Priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems. Trans Amer Math Soc (in press)
[2.]
Aftalion A., Pacella F. Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains. C R Math Acad Sci Paris, 2004, 339: 339-344.
[3.]
Amann H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev, 1976, 18: 620-709.
CrossRef Google scholar
[4.]
Ambrosetti A., Rabinowitz P. H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14: 349-381.
CrossRef Google scholar
[5.]
Bartsch T. Critical point theory on partially ordered Hilbert spaces. J Funct Anal, 2001, 186: 117-152.
CrossRef Google scholar
[6.]
Bartsch T., Chang K.-C., Wang Z.-Q. On the Morse indices of sign changing solutions of nonlinear elliptic problems. Math Z, 2000, 233: 655-677.
CrossRef Google scholar
[7.]
Bartsch T., Liu Z. Multiple sign changing solutions of a quasilinear elliptic eigenvalue problem involving the p-Laplacian. Comm Contemp Math, 2004, 6: 245-258.
CrossRef Google scholar
[8.]
Bartsch T., Liu Z. On a superlinear elliptic p-Laplacian equation. J Differential Equations, 2004, 198: 149-175.
CrossRef Google scholar
[9.]
Bartsch T., Liu Z., Weth T. Sign changing solutions of superlinear Schrödinger equations. Comm Partial Differential Equations, 2004, 29: 25-42.
CrossRef Google scholar
[10.]
Bartsch T., Liu Z., Weth T. Nodal solutions of a p-Laplacian equation. Proc London Math Soc, 2005, 91: 129-152.
CrossRef Google scholar
[11.]
Bartsch T., Wang Z.-Q. On the existence of sign changing solutions for semilinear Dirichlet problems. Topol Methods Nonlinear Anal, 1996, 7: 115-131.
[12.]
Bartsch T., Wang Z.-Q. Sign changing solutions of nonlinear Schrödinger equations. Topol Methods Nonlinear Anal, 1999, 13: 191-198.
[13.]
Bartsch T., Wang Z.-Q., Willem M. Chipot M., QuittnerEds P. The Dirichlet problem for superlinear elliptic equations. Handbook of Differential Equations: Stationary Partial Differential Equations, 2005, Amsterdam: Elsevier, 1-55.
CrossRef Google scholar
[14.]
Bartsch T., Weth T. Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann Inst H Poincaré Anal Non Linéaire, 2005, 22: 259-281.
CrossRef Google scholar
[15.]
Bartsch T., Willem M. Infinitely many nonradial solutions of a Euclidean scalar field equation. J Funct Anal, 1993, 117: 447-460.
CrossRef Google scholar
[16.]
Bartsch T., Willem M. Infinitely many radial solutions of a semilinear elliptic problem on ℝN. rch Rational Mech Anal, 1993, 124: 261-276.
CrossRef Google scholar
[17.]
Brezis H., Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36: 437-477.
CrossRef Google scholar
[18.]
Cao D., Noussair E. S. Multiple positive and nodal solutions for semilinear elliptic problems with critical exponents. Indiana Univ Math J, 1995, 44: 1249-1271.
CrossRef Google scholar
[19.]
Cao D., Peng S. A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms. J Differential Equations, 2003, 193: 424-434.
CrossRef Google scholar
[20.]
Castro A., Cossio J., Neuberger J. M. A sign-changing solution for a superlinear Dirichlet problem. Rocky Mountain J Math, 1997, 27: 1041-1053.
[21.]
Cerami G., Solimini S., Struwe M. Some existence results for superlinear elliptic boundary value problems involving critical exponents. J Funct Anal, 1986, 69: 289-306.
CrossRef Google scholar
[22.]
Chang K.-C. A variant mountain pass lemma. Sci Sinica, Ser A, 1983, 26: 1241-1255.
[23.]
Chang K.-C. Infinite-dimensional Morse Theory and Multiple Solution Problems. Progress in Nonlinear Differential Equations and Their Applications, No 6, 1993, Boston: Birkhäuser.
[24.]
Chang K.-C. Morse theory in nonlinear analysis. Nonlinear Functional Analysis and Applications to Differential Equations (Trieste, 1997), 1998, River Edge: World Sci Publ, 60-101.
[25.]
Chang K.-C. Heat method in nonlinear elliptic equations. Topological Methods, Variational Methods and Their Applications (Taiyuan, 2002), 2003, River Edge: World Sci Publ, 65-76.
[26.]
Chang K.-C., Jiang M. Dirichlet problem with indefinite nonlinearities. Calc Var Partial Differential Equations, 2004, 20: 257-282.
CrossRef Google scholar
[27.]
Conti M., Merizzi L., Terracini S. Remarks on variational methods and lower-upper solutions. Nonlinear Differential Equations Appl, 1999, 6: 371-393.
CrossRef Google scholar
[28.]
Conti M., Terracini S., Verzini G. Nehari’s problem and competing species systems. Ann Inst H Poincaré Anal Non Linéaire, 2002, 19: 871-888.
CrossRef Google scholar
[29.]
Costa D., Wang Z.-Q. Multiplicity results for a class of superlinear elliptic problems. Proc Amer Math Soc, 2005, 133: 787-794.
CrossRef Google scholar
[30.]
Dancer E., Du Y. Competing species equations with diffusion, large interaction, and jumping nonlinearities. J Differential Equations, 1994, 114: 434-475.
CrossRef Google scholar
[31.]
Dancer E., Du Y. On sign-changing solutions of certain semilinear elliptic problems. Appl Anal, 1995, 56: 193-206.
CrossRef Google scholar
[32.]
Dancer E., Du Y. Multiple solutions of some semilinear elliptic equations via the generalied Conley index. J Math Anal Appl, 1995, 189: 848-871.
CrossRef Google scholar
[33.]
Dancer E., Du Y. A note on multiple solutions of some semilinear elliptic problems. J Math Anal Appl, 1997, 211: 626-640.
CrossRef Google scholar
[34.]
Dancer E., Wei J. Sign-changing solutions for supercritical elliptic problems in domains with small holes. Manuscripta Math, 2007, 123: 493-511.
CrossRef Google scholar
[35.]
Hofer H. Variational and topological methods in partially ordered Hilbert spaces. Math Ann, 1982, 261: 493-514.
CrossRef Google scholar
[36.]
Jiang M. Critical groups and multiple solutions of the p-Laplacian equations. Nonlinear Anal, 2004, 59: 1221-1241.
[37.]
Li C., Li S. Multiple solutions and sign-changing solutions of a class of nonlinear elliptic equations with Neumann boundary condition. J Math Anal Appl, 2004, 298: 14-32.
CrossRef Google scholar
[38.]
Li S., Wang Z.-Q. Mountain pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet problems. J Anal Math, 2000, 81: 373-396.
[39.]
Li S., Wang Z.-Q. Ljusternik-Schnirelman theory in partially ordered Hilbert spaces. Trans Amer Math Soc, 2002, 354: 3207-3227.
CrossRef Google scholar
[40.]
Li S., Zhang Z. Sign-changing solution and multiple solutions theorems for semilinear elliptic boundary value problems with jumping nonlinearities. Acta Math Sinica, 2001, 44: 507-516.
[41.]
Li Y., Liu Z. Multiple and sign changing solutions of an elliptic eigenvalue problem with constraint. Sci China, Ser A, 2001, 44: 48-57.
CrossRef Google scholar
[42.]
Liu J., Wang Y., Wang Z.-Q. Solutions for quasilinear Schrödinger equations via the Nehari method. Comm Partial Differential Equations, 2004, 29: 879-901.
CrossRef Google scholar
[43.]
Liu Z. Multiple Solutions of Differential Equations. Ph D Thesis, 1992, Jinan: Shandong Univ.
[44.]
Liu Z., Li Y. Solutions of an elliptic eigenvalue problem involving subcritical or critical exponents. Comm Partial Differential Equations, 2001, 26: 2227-2248.
CrossRef Google scholar
[45.]
Liu Z., Sun J. Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations. J Differential Equations, 2001, 172: 257-299.
CrossRef Google scholar
[46.]
Liu Z., Sun J. Brezis H., Li S. J., Liu J. Q. Number of invariant sets of descending flow with applications in critical point theory. Morse Theory, Minimax Theory and Their Applications to Nonlinear Differential Equations, 2003, Boston: Int Press, 139-156.
[47.]
Liu Z., Sun J. Four versus two solutions of semilinear elliptic boundary value problems. Calc Var Partial Differential Equations, 2002, 14: 319-327.
CrossRef Google scholar
[48.]
Liu Z., van Heerden F. A., Wang Z.-Q. Nodal type bound states of Schrödinger equations via invariant set and minimax methods. J Differential Equations, 2005, 214: 358-390.
CrossRef Google scholar
[49.]
Liu Z., Wang Z.-Q. On the Ambrosetti-Rabinowitz superlinear condition. Adv Nonlinear Stud, 2004, 4: 563-574.
[50.]
Liu Z., Wang Z.-Q. Schrödinger equations with concave and convex nonlinearities. Z Angew Math Phys, 2005, 56: 609-629.
CrossRef Google scholar
[51.]
Liu Z., Wang Z.-Q. Multi-bump type nodal solutions having a prescribed number of nodal domains. I. Ann Inst H Poincaré Anal Non Linéaire, 2005, 22: 597-608.
CrossRef Google scholar
[52.]
Liu Z., Wang Z.-Q. Multi-bump type nodal solutions having a prescribed number of nodal domains. II. Ann Inst H Poincaré Anal Non Linéaire, 2005, 22: 609-631.
CrossRef Google scholar
[53.]
Liu Z., Wang Z.-Q., Weth T. Multiple solutions of nonlinear Schrödinger equations via flow invariance and Morse theory. Proc Roy Soc Edinburgh Sect A, 2006, 136: 945-969.
CrossRef Google scholar
[54.]
Rabinowitz P. H. Minimax Methods in Critical Point Theory with Applications to Differential Equations, 1986, Providence: Amer Math Soc.
[55.]
Rabinowitz P. H., Su J., Wang Z.-Q. Multiple solutions of a superlinear elliptic equation. Rend Lincei di Matematica, 2007, 18: 97-108.
[56.]
Schecheter M., Wang Z.-Q., Zou W. New linking theorem and sign-changing solutions. Comm Partial Differential Equations, 2004, 29: 471-488.
CrossRef Google scholar
[57.]
Schechter M., Zou W. Infinitely many solutions to perturbed elliptic equations. J Funct Anal, 2005, 228: 1-38.
CrossRef Google scholar
[58.]
Schechter M., Zou W. Sign-changing critical points from linking type theorems. Trans Amer Math Soc, 2006, 358: 5293-5318.
CrossRef Google scholar
[59.]
Sun J. Topics on Nonlinear Operators. Ph D Thesis, 1984, Jinan: Shandong Univ.
[60.]
Sun J. The Schauder condition in the critical point theory. Kexue Tongbao, 1986, 31: 1157-1162.
[61.]
Sun J., Liu Z. Calculus of variations and super-and sub-solutions in reverse order. Acta Math Sinica, 1994, 37: 512-514.
[62.]
Wang Z.-Q. On a superlinear elliptic equation. Ann Inst H Poincaré Anal Non Linéaire, 1991, 8: 43-57.
[63.]
Wang Z.-Q. Nonlinear boundary value problems with concave nonlinearities near the origin. Nonlinear Differential Equations Appl, 2001, 8: 15-33.
CrossRef Google scholar
[64.]
Wang Z.-Q. Minimax methods, invariant sets, and applications to nodal solutions of nonlinear elliptic problems. Proceedings of EquaDiff 03, Hasselt 2003, 2005, Singapore: World Scientific, 561-566.
CrossRef Google scholar
[65.]
Wang Z.-Q., Zhou J. A local minimax-Newton method for finding multiple saddle points with symmetries. SIAM J Numer Anal, 2004, 42: 1745-1759.
CrossRef Google scholar
[66.]
Wang Z.-Q., Zhou J. An efficient and stable method for computing multiple saddle points with symmetries. SIAM J Numer Anal, 2005, 43: 891-907.
CrossRef Google scholar
[67.]
Zhang Z., Li S. On sign-changing and multiple solutions of the p-Laplacian. J Funct Anal, 2003, 197: 447-468.
CrossRef Google scholar
[68.]
Zou W. Sign-changing saddle point. J Funct Anal, 2005, 219: 433-468.
[69.]
Zou W. On finding sign-changing solutions. J Funct Anal, 2006, 234: 364-419.
CrossRef Google scholar
AI Summary AI Mindmap
PDF(216 KB)

1207

Accesses

24

Citations

Detail

Sections
Recommended

/