Variational approach to various nonlinear problems in geometry and physics

Jiayu Li

Front. Math. China ›› 2008, Vol. 3 ›› Issue (2) : 205 -220.

PDF (178KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (2) : 205 -220. DOI: 10.1007/s11464-008-0013-1
Survey Article

Variational approach to various nonlinear problems in geometry and physics

Author information +
History +
PDF (178KB)

Abstract

In this survey, we will summarize the existence results of nonlinear partial differential equations which arises from geometry or physics by using variational method. We use the method to study Kazdan-Warner problem, Chern-Simons-Higgs model, Toda systems, and the prescribed Q-curvature problem in 4-dimension.

Keywords

Kazdan-Warner problem / Chern-Simons Higgs model / Toda system / Q-curvature

Cite this article

Download citation ▾
Jiayu Li. Variational approach to various nonlinear problems in geometry and physics. Front. Math. China, 2008, 3(2): 205-220 DOI:10.1007/s11464-008-0013-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chang A. S. Y., Yang P. Prescribing Gaussian curvature on S2. Acta Math, 1987, 159: 214-259.

[2]

Chang A. S. Y., Yang P. Extremal metrics of zeta functional determinants on 4-manifolds. Ann of Math, 1995, 142: 172-212.

[3]

Chang K. C., Liu J. Q. On Nirenberg’s problem. International J Math, 1993, 4: 35-57.

[4]

Chen W. X., Ding W. Y. Scalar curvature on S2. Trans Amer Math Soc, 1987, 303: 365-382.

[5]

Ding W., Jost J., Li J. The differential equation Δu = 8π-8πheu on a compact Riemann surface. Asian J Math, 1997, 1: 230-248.

[6]

Ding W., Jost J., Li J. An analysis of the two-vortex case in the Chern-Simons Higgs model. Cal Var and PDE, 1998, 7: 87-97.

[7]

Ding W., Jost J., Li J. Existence results for mean field equations. Ann Inst H Poincaré Anal Non Linéaire, 1999, 16: 653-666.

[8]

Djadli Z, Malchiodi A. Existence of conformal metrics with constant Q-curvature. Ann of Math (in press)

[9]

Escobar J. F., Schoen R. M. Conformal metrics with prescribed scalar curvature. Invent Math, 1986, 86: 243-253.

[10]

Hong C. W. A best constant and the Gaussian curvature. Proc Amer Math Soc, 1986, 97: 737-747.

[11]

Hong J., Kim Y., Pac P. Y. Multivortex solutions of the Abelian Chern-Simons theory. Phys Rev Lett, 1990, 64: 2230-2233.

[12]

Jackiw R., Weinberg E. Self-dual Chern-Simons vortices. Phys Rev Lett, 1990, 64: 2234-2237.

[13]

Jost J., Wang G. Analytic aspects of the Toda system. I. A Moser-Trudinger inequality. Comm Pure Appl Math, 2001, 54(11): 1289-1319.

[14]

Kazdan J., Warner F. Curvature functions for compact 2-manifolds. Ann Math, 1974, 99: 14-47.

[15]

Lan X., Li J. Asymptotic behavior of the Chern-Simons Higgs 6-th theory. Comm Partial Diff Equat, 2007, 32: 1473-1492.

[16]

Li J., Li Y. Solutions for Toda systems on Riemann surfaces. Ann Scuola Norm Sup Pisa Cl Sci, 2005, 5: 703-728.

[17]

Malchiodi A. Compactness of solutions to some geometric fourth-order equations. 2004, math/0410140

[18]

Marcello L., Margherita N. SU(3) Chern-Simons vortex theory and Toda systems. J Diff Equat, 2002, 184(2): 443-474.

[19]

Moser J. A sharp form of an inequality of N. Trudinger. Indiana Univ Math J, 1971, 20: 1077-1092.

[20]

Schoen R. M. Conformal deformation of a Riemannian metric to constant scalar curvature. J Diff Geom, 1984, 20: 479-495.

[21]

Struwe M., Tarantello G. On multivortex solutions in Chern-Simons gauge theory. Boll Unione Mat Ital Sez B Artic Ric Mat, 1998, 1: 109-121.

[22]

Tarantello G. Multiple condensate solutions for the Chern-Simons-Higgs theory. J Math Phys, 1996, 37: 3769-3796.

AI Summary AI Mindmap
PDF (178KB)

959

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/