Cantor families of periodic solutions for completely resonant wave equations

BERTI Massimiliano1, BOLLE Philippe2

PDF(189 KB)
PDF(189 KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (2) : 151-165. DOI: 10.1007/s11464-008-0011-3

Cantor families of periodic solutions for completely resonant wave equations

  • BERTI Massimiliano1, BOLLE Philippe2
Author information +
History +

Abstract

We present recent existence results of Cantor families of small amplitude periodic solutions for completely resonant nonlinear wave equations. The proofs rely on the Nash-Moser implicit function theory and variational methods.

Cite this article

Download citation ▾
BERTI Massimiliano, BOLLE Philippe. Cantor families of periodic solutions for completely resonant wave equations. Front. Math. China, 2008, 3(2): 151‒165 https://doi.org/10.1007/s11464-008-0011-3

References

1. Ambrosetti A Rabinowitz P Dual variational methods incritical point theory and applicationsJFunc Anal 1973 14349381. doi:10.1016/0022‐1236(73)90051‐7
2. Baldi P Berti M Periodic solutions of waveequations for asymptotically full measure sets of frequenciesRend Mat Acc Naz Lincei 2006 17257277
3. Bambusi D Paleari S Families of periodic solutionsof resonant PDEsJ Nonlinear Sci 2001 116987. doi:10.1007/s003320010010
4. Berti M Bolle P Periodic solutions of nonlinearwave equations with general nonlinearitiesComm Math Phys 2003 243315328. doi:10.1007/s00220‐003‐0972‐8
5. Berti M Bolle P Multiplicity of periodic solutionsof nonlinear wave equationsNonlinear Anal 2004 5610111046. doi:10.1016/j.na.2003.11.001
6. Berti M Bolle P Cantor families of periodicsolutions for completely resonant nonlinear wave equationsDuke Math J 2006 134359419. doi:10.1215/S0012‐7094‐06‐13424‐5
7. Berti M Bolle P Cantor families of periodicsolutions for wave equations via a variational principleAdvances in Mathematics 2008 21716711727. doi:10.1016/j.aim.2007.11.004
8. Berti M Bolle P Cantor families of periodicsolutions of wave equations with Ck nonlinearitiesNonlinear Differential Equations and Applications(in press)
9. Bourgain J Periodicsolutions of nonlinear wave equationsIn: Harmonic Analysis and Partial Differential Equations. Chicago Lecturesin MathChicagoUniv Chicago Press 1999 6997
10. Craig W Wayne E Newton's method and periodicsolutions of nonlinear wave equationCommPure Appl Math 1993 4614091498. doi:10.1002/cpa.3160461102
11. Fadell E R Rabinowitz P Generalized cohomological indextheories for Lie group actions with an application to bifurcationquestions for Hamiltonian systemsInv Math 1978 45139174. doi:10.1007/BF01390270
12. Gentile G Mastropietro V Procesi M Periodic solutions for completely resonant nonlinear waveequationsComm Math Phys 2005 256437490. doi:10.1007/s00220‐004‐1255‐8
13. Lidskij B V Shulman E Periodic solutions of the equation utt - uxx + u3 = 0Funct Anal Appl 1988 22332333. doi:10.1007/BF01077432
14. Moser J Periodicorbits near an equilibrium and a theorem by Alan WeinsteinComm Pure Appl Math 1976 29724747. doi:10.1002/cpa.3160290613
15. Struwe M Theexistence of surfaces of constant mean curvature with free boundariesActa Math 1988 1601964. doi:10.1007/BF02392272
16. Weinstein A Normalmodes for nonlinear Hamiltonian systemsInv Math 1973 204757. doi:10.1007/BF01405263
17. Yuan X Quasi-periodicsolutions of completely resonant nonlinear wave equationsJ Diff Equations 2006 230213274. doi:10.1016/j.jde.2005.12.012
AI Summary AI Mindmap
PDF(189 KB)

Accesses

Citations

Detail

Sections
Recommended

/