Gilmore-Lawler bound of quadratic assignment problem
Yong Xia
Front. Math. China ›› 2008, Vol. 3 ›› Issue (1) : 109 -118.
Gilmore-Lawler bound of quadratic assignment problem
The Gilmore-Lawler bound (GLB) is one of the well-known lower bound of quadratic assignment problem (QAP). Checking whether GLB is tight is an NP-complete problem. In this article, based on Xia and Yuan linearization technique, we provide an upper bound of the complexity of this problem, which makes it pseudo-polynomial solvable. We also pseudopolynomially solve a class of QAP whose GLB is equal to the optimal objective function value, which was shown to remain NP-hard.
Quadratic assignment problem (QAP) / Gilmore-Lawler bound, computational complexity / NP-hard
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
/
| 〈 |
|
〉 |