Finite groups with transitive semipermutability

Lifang Wang , Yanming Wang

Front. Math. China ›› 2008, Vol. 3 ›› Issue (1) : 101 -108.

PDF (115KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (1) : 101 -108. DOI: 10.1007/s11464-008-0009-x
Research Article

Finite groups with transitive semipermutability

Author information +
History +
PDF (115KB)

Abstract

A group G is said to be a T-group (resp. PT-group, PST-group), if normality (resp. permutability, S-permutability) is a transitive relation. In this paper, we get the characterization of finite solvable PST-groups. We also give a new characterization of finite solvable PT-groups.

Keywords

Finite group / transitive / permutable

Cite this article

Download citation ▾
Lifang Wang, Yanming Wang. Finite groups with transitive semipermutability. Front. Math. China, 2008, 3(1): 101-108 DOI:10.1007/s11464-008-0009-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agrawal R. K. Finite groups whose subnormal subgroups permute with all Sylow subgroups. Proc Amer Soc, 1975, 47(1): 77-83.

[2]

Ballester-Bolinches A. Permutably embedded subgroups of finite soluble groups. Arch Math (Basel), 1995, 65(1): 1-7.

[3]

Ballester-Bolinches A., Pedraza Aguilera M. C. Sufficient conditions for supersolubility of finite groups. Journal of Pure and Applied Algebra, 1998, 127(2): 113-118.

[4]

Ballester-Bolinches A., Esteban-Romero R. Sylow permutable subgroups of finite groups. J Alg, 2002, 251(2): 727-738.

[5]

Beidleman J. C., Brewster B., Robinson D. J. S. Criteria for permutability to be transitive in finite groups. J Alg, 1999, 222(2): 400-412.

[6]

Doerk K., Hawkes T. Finite Solvable Groups, 1992, Berlin-New York: Walter De Gruyter.

[7]

Feldman Arnold D. t-groups and their generalizations. Group Theory (Granville, OH, 1992), 1993, River Edge: World Sci Publishing, 128-133.

[8]

Gaschütz W. Gruppen, in dennen das Normalteilersein transitiv ist. J Reine Angew Math, 1957, 198: 87-92.

[9]

Zacher G. I gruppi risolubli in cui i sottogruppi di composizione coincidono con i sottogrupi quasi-normali. Atti Accad Naz Lincei Rend cl Sci Fis Mat Natur, 1964, 37(8): 150-154.

[10]

Zhang Q. Finite groups with only seminormal and abnormal subgroups. J Math Study, 1996, 29(4): 10-15.

AI Summary AI Mindmap
PDF (115KB)

802

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/