Blow-up criterion for 2-D Boussinesq equations in bounded domain

Langhua Hu , Huaiyu Jian

Front. Math. China ›› 2007, Vol. 2 ›› Issue (4) : 559 -581.

PDF (244KB)
Front. Math. China ›› 2007, Vol. 2 ›› Issue (4) : 559 -581. DOI: 10.1007/s11464-007-0034-1
Research Article

Blow-up criterion for 2-D Boussinesq equations in bounded domain

Author information +
History +
PDF (244KB)

Abstract

We extend the results for 2-D Boussinesq equations from ℝ2 to a bounded domain Ω. First, as for the existence of weak solutions, we transform Boussinesq equations to a nonlinear evolution equation Ut + A(t, U) = 0. In stead of using the methods of fundamental solutions in the case of entire ℝ2, we study the qualities of F(u, υ) = (u · ▽)υ to get some useful estimates for A(t, U), which helps us to conclude the local-in-time existence and uniqueness of solutions. Second, as for blow-up criterions, we use energy methods, Sobolev inequalities and Gronwall inequality to control $\left\| \theta \right\|_{H^s (\Omega )} $$ and $\left\| u \right\|_{H^s (\Omega )} $$ by $\left\| {\nabla \theta } \right\|_{L^\infty (\Omega )} $$ and $\left\| {\nabla u} \right\|_{L^\infty (\Omega )} $$. Furthermore, $\left\| {\nabla \theta } \right\|_{L^\infty (\Omega )} $$ can control $\left\| {\nabla u} \right\|_{L^\infty (\Omega )} $$ by using vorticity transportation equations. At last, $\left\| {\nabla \theta } \right\|_{M_\phi (\Omega )} $$ can control $\left\| {\nabla \theta } \right\|_{L^\infty (\Omega )} $$. Thus, we can find a blow-up criterion in the form of $\lim _{t \to T^ * } \int_0^t {\left\| {\nabla \theta ( \cdot ,\tau )} \right\|_{M_\phi (\Omega )} d\tau = \infty } $$.

Keywords

Boussinesq equation / nonlinear evolution equation / existence and uniqueness / Mϕ space / blow-up criterion

Cite this article

Download citation ▾
Langhua Hu, Huaiyu Jian. Blow-up criterion for 2-D Boussinesq equations in bounded domain. Front. Math. China, 2007, 2(4): 559-581 DOI:10.1007/s11464-007-0034-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cannon J. R., Dibenedetto E. Rautmann R. The initial value problem for the Boussinesq equations with data in Lp. Approximation Methods for Navier-Stokes Problems, 1980, Berlin: Springer, 129-144.

[2]

Chae D., Imanuvilov O. Y. Generic solvability of the axisymmetric 3-D Euler equations and the 2-D Boussinesq equations. J Differential Equations, 1999, 156: 1-17.

[3]

Chae D., Kim S.-K., Nam H.-S. Local existence and blow-up criterion Hölder continuous solutions of the Boussinesq equations. Nagoya Math J, 1999, 155: 55-80.

[4]

Chorin A. J., Marsden J. E. A Mathematical Introduction to Fluid Mechanics, 1993, New York: Springer-Verlag.

[5]

Cordoba D., Fefferman C., De LaLlave R. On squirt singularities in hydrodynamics. SIAM J Math Anal, 2004, 36: 204-213.

[6]

E W Shu C. Small-scale structures in Boussinesq convection. Phys Fluids, 1994, 6: 49-58.

[7]

Ferrari A. B. On the blow-up of solutions of 3-D Euler equations in a bounded domain. Commun Math Phys, 1993, 155: 277-294.

[8]

Hartman P. Ordinary Differential Equations, 1982, Boston: Birkhäuser.

[9]

Hou T. Y., Li C. Global well-posedness of the viscous Boussinesq equations. Discrete and Continuous Dynamical Systems, 2005, 12(1): 1-12.

[10]

Kato T., Lai C. Y. Nonlinear evolution equations and the Euler flow. J Funct Anal, 1984, 56: 15-28.

[11]

Majda A. Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics, No 9. AMS/CIMS, 2003

[12]

Majda A., Bertozzi A. Vorticity and Incompressible Flow, 2002, Cambridge: Cambridge University Press.

[13]

Moffatt H. K. Ricca R. L. Some remarks on topological fluid mechanics. An Introduction to the Geometry and Topology of Fluid Flows, 2001, Dordrecht: Kluwer Academic Publishers, 3-10.

[14]

Ogawa T., Taniuchi Y. On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain. J Differential Equations, 2003, 190: 39-63.

[15]

Ogawa T., Taniuchi Y. A Note on blow-up criterion to the 3-D Euler equations in a bounded domain. Journal of Mathematical Fluid Mechanics, 2003, 5(1): 17-23.

[16]

Pedlosky J. Geophysical Fluid Dynamics, 1987, New York: Springer-Verlag.

AI Summary AI Mindmap
PDF (244KB)

780

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/