Stochastic differential equations with polar-decomposed Lévy measures and applications to stochastic optimization

Jonathan Bennett , Jiang-Lun Wu

Front. Math. China ›› 2007, Vol. 2 ›› Issue (4) : 539 -558.

PDF (252KB)
Front. Math. China ›› 2007, Vol. 2 ›› Issue (4) : 539 -558. DOI: 10.1007/s11464-007-0033-2
Research Article

Stochastic differential equations with polar-decomposed Lévy measures and applications to stochastic optimization

Author information +
History +
PDF (252KB)

Abstract

This paper is concerned with the optimal control of jump-type stochastic differential equations associated with polar-decomposed Lévy measures with the feature of explicit construction on the jump term. The concrete construction is then utilized for analysis of two portfolio optimization problems for financial market models driven by stable-like processes.

Keywords

Jump-type stochastic differential equations / polar decomposition of Lévy measures / stable-like processes / portfolio optimization

Cite this article

Download citation ▾
Jonathan Bennett, Jiang-Lun Wu. Stochastic differential equations with polar-decomposed Lévy measures and applications to stochastic optimization. Front. Math. China, 2007, 2(4): 539-558 DOI:10.1007/s11464-007-0033-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albeverio S., Rüdiger B., Wu J. L. Invariant measures and symmetry property of Lévy type operators. Potential Anal, 2000, 13: 147-168.

[2]

Applebaum D. Lévy Processes and Stochastic Calculus, 2004, Cambridge: Cambridge Univ Press.

[3]

Barndorff-Nielsen O. E., Mikosch T., Resnick S. I. Lévy Processes: Theory and Applications, 2001, Boston: Birkhäuser.

[4]

Bass R. F. Uniqueness in law for pure jump Markov processes. Probab Th Rel Fields, 1988, 79: 271-287.

[5]

Bennett J, Wu J-L. Optimal stochastic control problem for SDEs driven by a general Lévy-type process. Stochastic Analysis and Applications (in press)

[6]

Benth F., Karlsen K., Reikvam K. Kohlmann M., Tang S. On the existence of optimal controls for a singular stochastic control problem in finance. Mathematical Finance (Konstanz, 2000), 2001, Basel: Birkhäuser, 79-88.

[7]

Benth F., Karlsen K., Reikvam K. Optimal portfolio selection with consumption and nonlinear integro-differential equations with a gradient constraint: A viscosity solution approach. Finance Stoch, 2001, 5: 275-303.

[8]

Benth F., Karlsen K., Reikvam K. Optimal portfolio management rules in a non-Gaussian market with durability and intertemporal substitution. Finance Stoch, 2001, 5: 447-467.

[9]

Benth F., Karlsen K., Reikvam K. Portfolio optimization in a Lévy market with intertemporal substitution and transaction costs. Stoch Stoch Rep, 2002, 74(3–4): 517-569.

[10]

Bertoin J. Lévy Processes, 1996, Cambridge: Cambridge Univ Press.

[11]

Crandall M. G., Ishii H., Lions P. L. User’s guide to viscosity solutions of second order partial differential equations. Bull Amer Math Soc (NS), 1992, 27(1): 1-67.

[12]

El Karoui N., Jeanblanc-Picqué M. Optimization of consumption with labor income. Finance Stochast, 1998, 2: 409-440.

[13]

El Karoui N., Lepeltier J.-P. Représentation des processus ponctuels multivariés à l’aide d’un processus de Poisson. Z Wahr verw Geb, 1977, 39: 111-133.

[14]

Framstad N. C., Øksendal B., Sulem A. Sufficient stochastic maximum principle for the optimal control of jump diffusions and applications to finance. J Optim Theory Appl, 2004, 121: 77-98.

[15]

Freidlin M. I. On the factorization of non-negative definite matrices. Theory Probab Appl, 1968, 13: 354-356.

[16]

Gihman I. I., Skorohod A. V. Stochastic Differential Equations and Their Applications, 1982, Kiev: Naukova Dumka.

[17]

Ikeda N., Watanabe S. Stochastic Differential Equations and Diffusion Processes, 1981, Kodansha: North-Holland.

[18]

Ishikawa Y. Optimal control problem associated with jump processes. Appl Math Optim, 2004, 50: 21-65.

[19]

Itô K. On stochastic differential equations. Mem Amer Math Soc, 1951, 4: 1-51.

[20]

Jacob N. Pseudo-Differential Operators and Markov Processes. I. Fourier Analysis and Semigroups, 2001, London: Imperial College Press.

[21]

Jacob N. Pseudo-Differential Operators and Markov Processes. II. Generators and Their Potential Theory, 2002, London: Imperial College Press.

[22]

Jacob N. Pseudo-Differential Operators and Markov Processes. III. Markov Processes and Applications, 2005, London: Imperial College Press.

[23]

Jakobsen E. R., Karlsen K. H. Continuous dependence estimates for viscosity solutions of integro-PDEs. J Differential Equations, 2005, 212(2): 278-318.

[24]

Jakobsen E. R., Karlsen K. H. A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations. Nonlinear Differential Equations Appl, 2006, 13(2): 137-165.

[25]

Kabanov Y. M. Rozovskii B. L., Kabanov Y. M., Shiryaev A. N. On the Pontryagin maximum principle for SDEs with a Poisson-type driving noise. Statistics and Control of Stochastic Processes, 1997, River Edge: World Scientific, 173-190.

[26]

Kohlmann M. Optimality conditions in optimal control of jump processes-extended abstract. Proceedings in Operations Research, Physica, Würzburg, Germany, 1978, 7: 48-57.

[27]

Kolokoltsov V. Symmetric stable laws and stable-like jump-diffusions. Proc London Math Soc, 2000, 80: 725-768.

[28]

Negoro A., Tsuchiya M. Stochastic processes and semigroups associated with degenerate Lévy generating operators. Stoch Stoch Rep, 1989, 26: 29-61.

[29]

Øksendal B., Sulem A. Applied Stochastic Control of Jump Diffusions, 2005, Berlin: Springer-Verlag.

[30]

Phillips R. S., Sarason L. Elliptic-parabolic equations of the second order. J Math Mech, 1968, 17: 891-917.

[31]

Samorodnitsky G., Taqqu M. Stable non-Gaussian Random Processes. Stochastic Models with Infinite Variance, 1994, New York: Chapman and Hall.

[32]

Sato K. Lévy Processes and Infinitely Divisible Distributions, 1999, Cambridge: Cambridge Univ Press.

[33]

Stroock D. W. Diffusion processes associated with Lévy generators. Z Wahr verw Geb, 1975, 32: 209-244.

[34]

Stroock D. W. Markov Processes from K. Itô’s Perspective. Annals of Mathematics Studies, Vol 1555, 2003, Princeton: Princeton University Press.

[35]

Tang S. J., Li X. J. Necessary conditions for optimal control of stochastic systems with random jumps. SIAM Journal on Control and Optimization, 1994, 32: 1447-1475.

[36]

Tsuchiya M. Lévy measure with generalized polar decomposition and the associated SDE with jumps. Stoch Stoch Rep, 1992, 38: 95-117.

AI Summary AI Mindmap
PDF (252KB)

639

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/