Utility maximization with partial information: Hamilton-Jacobi-Bellman equation approach

Lihua Bai , Junyi Guo

Front. Math. China ›› 2007, Vol. 2 ›› Issue (4) : 527 -537.

PDF (167KB)
Front. Math. China ›› 2007, Vol. 2 ›› Issue (4) : 527 -537. DOI: 10.1007/s11464-007-0032-3
Research Article

Utility maximization with partial information: Hamilton-Jacobi-Bellman equation approach

Author information +
History +
PDF (167KB)

Abstract

This paper deals with the problem of maximizing the expected utility of the terminal wealth when the stock price satisfies a stochastic differential equation with instantaneous rates of return modelled as an Ornstein-Uhlenbeck process. Here, only the stock price and interest rate can be observable for an investor. It is reduced to a partially observed stochastic control problem. Combining the filtering theory with the dynamic programming approach, explicit representations of the optimal value functions and corresponding optimal strategies are derived. Moreover, closed-form solutions are provided in two cases of exponential utility and logarithmic utility. In particular, logarithmic utility is considered under the restriction of short-selling and borrowing.

Keywords

Utility maximization / partial information / filtering theory / Hamilton-Jacobi-Bellman (HJB) equation

Cite this article

Download citation ▾
Lihua Bai, Junyi Guo. Utility maximization with partial information: Hamilton-Jacobi-Bellman equation approach. Front. Math. China, 2007, 2(4): 527-537 DOI:10.1007/s11464-007-0032-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Browne S., Whitt W. Portfolio choice and the Bayesian Kelly criterion. Adv Appl Probab, 1996, 28(4): 1145-1176.

[2]

Fleming W. H., Soner H. M. Controlled Markov Processes and Viscosity Solutions, 1993, New York: Springer-Verlag.

[3]

Hakansson N. Portfolio Analysis, 1997, New York: W W Norton.

[4]

Karatzas I., Xue X. A note on utility maximization under partial observation. Math Finance, 1991, 1(2): 57-70.

[5]

Karatzas I., Zhao X. Jouini E., Cvtanić J., Musiela M. Bayesian adaptive portfolio optimization. Handbooks in Mathematical Finance: Option Pricing, Interest Rates and Risk Management, 2001, Cambridge: University Press, 632-669.

[6]

Karatzas I., Shreve S. E. Methods of Mathematical Finance, 1998, New York: Springer-Verlag.

[7]

Lakner P. Utility maximization with partial information. Stochast Proc Appl, 1995, 56(2): 247-273.

[8]

Lakner P. Optimal trading strategy for an investor: the case of partial information. Stochast Proc Appl, 1998, 76(1): 77-97.

[9]

Liptser R. S., Shiryayev A. N. Statistics of Random Process, 1978 2 Berlin: Springer.

[10]

Merton R. Lifetime portfolio selection under uncertainty: The continuous-time case. Rev Econom Statist, 1969, 51(3): 247-257.

[11]

Nagai H., Peng S. Risk-sensitive dynamic portfolio optimization with partial information on infinite time horizon. Ann Appl Probab, 2002, 12(1): 173-195.

[12]

Rishel R. McEneany W., Yin G., Zhang Q. Optimal portfolio management with partial observation and power utility function. Stochastic Analysis, Control, Optimization and Applications: Volume in Honor of W. H. Fleming, 1999, Boston: Birkhäuser, 605-620.

[13]

Runggaldier W. J., Zaccaria A. A. Stochastic control approach to risk management under restricted information. Math Finance, 2000, 10(2): 277-288.

[14]

Zohar G. A generalized Cameron-Martin formula with application to partially observed dynamic portfolio optimization. Math Finance, 2001, 11(4): 475-494.

AI Summary AI Mindmap
PDF (167KB)

794

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/