Perelman’s λ-functional and Seiberg-Witten equations

Fuquan Fang , Yuguang Zhang

Front. Math. China ›› 2007, Vol. 2 ›› Issue (2) : 191 -210.

PDF (265KB)
Front. Math. China ›› 2007, Vol. 2 ›› Issue (2) : 191 -210. DOI: 10.1007/s11464-007-0014-5
Research Article

Perelman’s λ-functional and Seiberg-Witten equations

Author information +
History +
PDF (265KB)

Abstract

In this paper, we estimate the supremum of Perelman’s λ-functional λM(g) on Riemannian 4-manifold (M, g) by using the Seiberg-Witten equations. Among other things, we prove that, for a compact Kähler-Einstein complex surface (M, J, g0) with negative scalar curvature, (i) if g1 is a Riemannian metric on M with λM(g1) = λM(g0), then $Vol_{g_1 } $$ (M) ⩾ $Vol_{g_0 } $$ (M). Moreover, the equality holds if and only if g1 is also a Kähler-Einstein metric with negative scalar curvature. (ii) If {gt}, t ∈ [−1, 1], is a family of Einstein metrics on M with initial metric g0, then gt is a Kähler-Einstein metric with negative scalar curvature.

Keywords

Perelman’s λ-functional / Ricci-flow / Seiberg-Witten equations

Cite this article

Download citation ▾
Fuquan Fang, Yuguang Zhang. Perelman’s λ-functional and Seiberg-Witten equations. Front. Math. China, 2007, 2(2): 191-210 DOI:10.1007/s11464-007-0014-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hamilton R. S. Three-manifolds with positive Ricci curvature. J Diff Geom, 1982, 17: 255-306.

[2]

Perelman G. The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159

[3]

Perelman G. Ricci flow with surgery on three-manifolds. arXiv:math:DG/0303109v1

[4]

Kleiner B, Lott J. Notes on Perelman’s papers. arxiv/math.DG/0605667

[5]

Taubes C. H. More constraints on symplectic forms from Seiberg-Witten invariants. Math Res Lett, 1995, 2: 9-13.

[6]

Barth W. P., Hulek K., Peters C. A. M. Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 2004 2nd ed. Berlin: Springer-Verlag.

[7]

Gursky M. J. The Weyl functional, de Rham cohomology, and Kähler-Einstein metrics. Ann of Math (2), 1998, 148(1): 315-337.

[8]

Dai X Z, Wang X D, Wei G F. On the stability of Kähler-Einstein metrics. arXiv:math.DG/0504527

[9]

Koiso N. Einstein metrics and complex structures. Invent Math, 1983, 73: 71-106.

[10]

Bauer S. A stable cohomotopy refinement of Seiberg-Witten invariants. II. Invent Math, 2004, 155(1): 21-40.

[11]

Bauer S., Furuta M. A stable cohomotopy refinement of Seiberg-Witten invariants. I. Invent Math, 2004, 155(1): 1-19.

[12]

Ishida M., LeBrun C. Curvature, connected sums, and Seiberg-Witten theory. Comm Anal Geom, 2003, 11(5): 809-836.

[13]

LeBrun C. Four-dimensional Einstein manifolds and beyond. In: Lectures on Einstein Manifolds, 247–285

[14]

Kronheimer P. B. Minimal genus in S1 × M3. Invent Math, 1999, 135(1): 45-61.

[15]

Kronheimer P B. Embedded surface and gauge theory in three and four dimensions. In: Lectures on Einstein Manifolds III. 1998, 243–298

[16]

LeBrun C. Weyl curvature, Einstein metrics, and Seiberg-Witten theory. Math Res Lett, 1998, 5: 423-438.

[17]

Gromov M., Lawson H. B. The classification of simply connected manifolds of positive scalar curvature. Ann of Math, 1980, 111: 423-434.

[18]

Schoen R., Yau S. T. On the structure of manifolds with positive scalar curvature. Manuscripta Math, 1979, 28(1–3): 159-183.

[19]

Bär C., Dahl M. Small eigenvalues of the conformal Laplacian. Geom Funct Anal, 2003, 13: 483-508.

[20]

Bär C., Dahl M. Surgery and the spectrum of the Dirac operator. J rein angew Math, 2002, 552: 53-76.

[21]

Rosenberg J., Stolz S. Metric of positive scalar curvature and connections with surgery. Surveys in Surgery Theory 2, 2001, Princeton: Princeton Univ Press, 353-386.

[22]

Kotschick D. Monopole classes and Perelman’s invariant of four-manifolds. arxiv/math.DG/0608504

[23]

Akutagawa K, Ishida M, LeBrun C. Perelman’s invariant, Ricci flow, and the Yamabe invariants of smooth manifolds. arxiv/math.DG/0610130

AI Summary AI Mindmap
PDF (265KB)

850

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/