PDF
(265KB)
Abstract
In this paper, we estimate the supremum of Perelman’s λ-functional λM(g) on Riemannian 4-manifold (M, g) by using the Seiberg-Witten equations. Among other things, we prove that, for a compact Kähler-Einstein complex surface (M, J, g0) with negative scalar curvature, (i) if g1 is a Riemannian metric on M with λM(g1) = λM(g0), then $Vol_{g_1 } $$ (M) ⩾ $Vol_{g_0 } $$ (M). Moreover, the equality holds if and only if g1 is also a Kähler-Einstein metric with negative scalar curvature. (ii) If {gt}, t ∈ [−1, 1], is a family of Einstein metrics on M with initial metric g0, then gt is a Kähler-Einstein metric with negative scalar curvature.
Keywords
Perelman’s λ-functional
/
Ricci-flow
/
Seiberg-Witten equations
Cite this article
Download citation ▾
Fuquan Fang, Yuguang Zhang.
Perelman’s λ-functional and Seiberg-Witten equations.
Front. Math. China, 2007, 2(2): 191-210 DOI:10.1007/s11464-007-0014-5
| [1] |
Hamilton R. S. Three-manifolds with positive Ricci curvature. J Diff Geom, 1982, 17: 255-306.
|
| [2] |
Perelman G. The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159
|
| [3] |
Perelman G. Ricci flow with surgery on three-manifolds. arXiv:math:DG/0303109v1
|
| [4] |
Kleiner B, Lott J. Notes on Perelman’s papers. arxiv/math.DG/0605667
|
| [5] |
Taubes C. H. More constraints on symplectic forms from Seiberg-Witten invariants. Math Res Lett, 1995, 2: 9-13.
|
| [6] |
Barth W. P., Hulek K., Peters C. A. M. Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 2004 2nd ed. Berlin: Springer-Verlag.
|
| [7] |
Gursky M. J. The Weyl functional, de Rham cohomology, and Kähler-Einstein metrics. Ann of Math (2), 1998, 148(1): 315-337.
|
| [8] |
Dai X Z, Wang X D, Wei G F. On the stability of Kähler-Einstein metrics. arXiv:math.DG/0504527
|
| [9] |
Koiso N. Einstein metrics and complex structures. Invent Math, 1983, 73: 71-106.
|
| [10] |
Bauer S. A stable cohomotopy refinement of Seiberg-Witten invariants. II. Invent Math, 2004, 155(1): 21-40.
|
| [11] |
Bauer S., Furuta M. A stable cohomotopy refinement of Seiberg-Witten invariants. I. Invent Math, 2004, 155(1): 1-19.
|
| [12] |
Ishida M., LeBrun C. Curvature, connected sums, and Seiberg-Witten theory. Comm Anal Geom, 2003, 11(5): 809-836.
|
| [13] |
LeBrun C. Four-dimensional Einstein manifolds and beyond. In: Lectures on Einstein Manifolds, 247–285
|
| [14] |
Kronheimer P. B. Minimal genus in S1 × M3. Invent Math, 1999, 135(1): 45-61.
|
| [15] |
Kronheimer P B. Embedded surface and gauge theory in three and four dimensions. In: Lectures on Einstein Manifolds III. 1998, 243–298
|
| [16] |
LeBrun C. Weyl curvature, Einstein metrics, and Seiberg-Witten theory. Math Res Lett, 1998, 5: 423-438.
|
| [17] |
Gromov M., Lawson H. B. The classification of simply connected manifolds of positive scalar curvature. Ann of Math, 1980, 111: 423-434.
|
| [18] |
Schoen R., Yau S. T. On the structure of manifolds with positive scalar curvature. Manuscripta Math, 1979, 28(1–3): 159-183.
|
| [19] |
Bär C., Dahl M. Small eigenvalues of the conformal Laplacian. Geom Funct Anal, 2003, 13: 483-508.
|
| [20] |
Bär C., Dahl M. Surgery and the spectrum of the Dirac operator. J rein angew Math, 2002, 552: 53-76.
|
| [21] |
Rosenberg J., Stolz S. Metric of positive scalar curvature and connections with surgery. Surveys in Surgery Theory 2, 2001, Princeton: Princeton Univ Press, 353-386.
|
| [22] |
Kotschick D. Monopole classes and Perelman’s invariant of four-manifolds. arxiv/math.DG/0608504
|
| [23] |
Akutagawa K, Ishida M, LeBrun C. Perelman’s invariant, Ricci flow, and the Yamabe invariants of smooth manifolds. arxiv/math.DG/0610130
|