PDF
(367KB)
Abstract
The asymptotic expressions of the covariance matrices for both the least square estimates LαT and Markov (best linear) estimates $\bar \alpha _T $$ are obtained, based on a sample in a finite interval (0, T) of the regression co-efficients α = (α1, …, αm 0)′ of a parameter-continuous process with a stationary residual. We assume that the regression variables φν(t), t ⩾ 0, ν = 1, …, m0, are continuous in t, and satisfy conditions (3.1)–(3.3). For the residual, we assume that it is a stationary process that possesses a bounded continuous spectral density f(λ). Under these assumptions, it is proven that $\mathop {\lim }\limits_{T \to \infty } D_T E_0 \left( {L\alpha _T L\alpha _T^* } \right)D_T = 2\pi \left[ {B\left( 0 \right)} \right]^{ - 1} \int_{ - \infty }^\infty {f( - \lambda )d\alpha (\lambda )\left[ {B\left( 0 \right)} \right]^{ - 1} } ,$ where the matrices DT, B(0), α(λ) are defined in Section 3.
Under the assumptions mentioned above, if, furthermore, there exist some positive integer m and a constant C such that g(λ)(1 + λ2)m ⩾ C > 0, where g(λ) is the spectral density of the residual, and for every N > 0, $\frac{{\lim _{T \to \infty } \smallint _0^T \overline {\varphi _\mu ^{(k)} (t + h)} \varphi _\nu ^{(j)} (t + l)dt}}{{\sqrt {\Phi _\mu (T)\Phi _\nu (T)} }},0 \leqslant k,j \leqslant m$ converge uniformly in h, l ∈ (−N, N), then the following formula holds. $\mathop {\lim }\limits_{T \to \infty } D_T E_0 \hat \alpha _T \hat \alpha _T^ * D_T = 2\pi \left[ {\int_{ - \infty }^\infty {\frac{1}{{g( - \lambda )}}d\alpha (\lambda )} } \right]^{ - 1} .$
The asymptotic equivalence of the least square estimates and the Markov estimates is also discussed.
Keywords
regression coefficients
/
parameter process
/
stationary residual
/
60J27
/
60G10
Cite this article
Download citation ▾
Shi-jian Yan, Xiu-fang Liu.
On the estimation of the regression coefficients of a continuous parameter process with stationary residual.
Front. Math. China, 2006, 1(2): 201-233 DOI:10.1007/s11464-006-004-z
| [1] |
Grenander U., Stochastic processes and statistical inference, Ark. Mat., 1950, 1, Nr.17
|
| [2] |
Grenander U., Rosenblatt M. Statistical analysis of Stationary time series, 1957, New York: Wiley.
|
| [3] |
Wang S. On the estimation of the regression coefficients of the stochastic field on lattice points. Acta Mathematica Sinica, 1958, 8: 210-213.
|
| [4] |
Jiang Z. On the estimation of regression coefficients of a parameter-continuous time series with a stationary residual. Теория Вероят. и ее. примен., 1959, 4: 405-423.
|
| [5] |
Heble M. P. A regression problem concerning stationary processes. Trans. of Amer. Math. Soc., 1961, 99: 350-371.
|
| [6] |
Hajek J. On linear estimation theory for an infinite number of observations. Теория Вероят. И ее. примен., 1961, 6: 182-193.
|
| [7] |
Hajek J. On linear statistical problems in stochastic processes. Czech. Math. J., 1962, 87(12): 404-444.
|
| [8] |
Hajek J., On a simple linear model in Gaussian processes, Trans. sec. praǵue. Conf. Inf. Th. etc., 1960: 185–197
|
| [9] |
Aronszain N. Theory of reproducing kernels. Trans. Amer. Math. Soc., 1950, 68: 337-404.
|
| [10] |
Doob J., Stochastic Processes, New York, 1952
|
| [11] |
Bochner S., Chandrasekharan K. Fourier Transforms, 1949, Princeton: Princeton Univ. Press.
|
| [12] |
Loeve M. Probability Theory, 1960, New York: Van Nostrand.
|
| [13] |
Mikusinski J., Operational Calculus, Perǵamon press, 1959
|
| [14] |
Chen Y. On the asymptotic properties of the estimates for the regression coefficients of a continuous parameter process with a stationary residual. Journal of Fudan University, 1965, 10: 102-112.
|