Orthogonal two-direction multiscaling functions

Changzhen Xie , Shouzhi Yang

Front. Math. China ›› 2006, Vol. 1 ›› Issue (4) : 604 -611.

PDF (144KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (4) : 604 -611. DOI: 10.1007/s11464-006-0031-9
Research Article

Orthogonal two-direction multiscaling functions

Author information +
History +
PDF (144KB)

Abstract

The concept of a two-direction multiscaling functions is introduced. We investigate the existence of solutions of the two-direction matrix refinable equation $\Phi (x) = \sum\limits_{k \in \mathbb{Z}} {P_k^ + \Phi (2x - k) + } \sum\limits_{k \in \mathbb{Z}} {P_k^ - \Phi (k - 2x)} ,$ where r × r matrices {Pk +} and {Pk } are called the positive-direction and negative-direction masks, respectively. Necessary and sufficient conditions that the above two-direction matrix refinable equation has a compactly supported distributional solution are established. The definition of orthogonal two-direction multiscaling function is presented, and the orthogonality criteria for two-direction multiscaling function is established. An algorithm for constructing a class of two-direction multiscaling functions is obtained. In addition, the relation of both orthogonal two-direction multiscaling function and orthogonal multiscaling function is discussed. Finally, construction examples are given.

Keywords

two-direction multiscaling function / positive-direction mask / negative-direction mask / two-direction matrix refinable equation / 42C15 / 94A12

Cite this article

Download citation ▾
Changzhen Xie, Shouzhi Yang. Orthogonal two-direction multiscaling functions. Front. Math. China, 2006, 1(4): 604-611 DOI:10.1007/s11464-006-0031-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Daubechies I. Ten Lecture on Wavelets, 1992, Philadelphia: SIAM, Publ.

[2]

Daubechies I. Orthonormal basis of compactly supported wavelets. Comm Pure and Appl Math, 1988, 41(7): 909-996.

[3]

Chui C. K., Wang J. Z. On compactly supported spline wavelets and a duality principle. Trans Amer Math Soc, 1992, 330(2): 903-915.

[4]

Daubechies I., Lagarias J. C. Two-scale difference equations. I. Existence and global regularity of solutions. SIAM J Math Anal, 1991, 22(5): 1388-1410.

[5]

Daubechies I., Lagarias J. C. Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals. SIAM J Math Anal, 1992, 23(4): 1031-1079.

[6]

Jiang Q. T., Shen Z. W. On existence and weak stability of matrix refinable functions. Constr Approx, 1999, 15(3): 337-353.

[7]

Plonka G., Strela V. From wavelets to multiwavelets, Mathematical methods for curves and surfaces. Innov Appl Math, 1997, 2: 375-399.

[8]

Geronimo J., Hardin D. P., Massopust P. Fractal functions and wavelet expansions based on several scaling functions. J Approx Theory, 1994, 78(3): 373-401.

[9]

Yang S. Z., Cheng Z. X., Wang H. Y. Construction of biorthogonal multiwavelets. J Math Anal Appl, 2002, 276(1): 1-12.

[10]

Yang S. Z. A fast algorithm for constructing orthogonal multiwavelets. ANZIAM Journal, 2004, 46(2): 185-202.

[11]

Yang S. Z., Peng L. Z. Raising approximation order of refinable vector by increasing multiplicity. Sci China, Ser A, 2006, 49(1): 86-97.

[12]

Shen Z. W. Refinable function vectors. SIAM J Math Anal, 1998, 29(1): 235-250.

[13]

Chui C. K., Lian J. A. A study on orthonormal multiwavelets. J Appl Numer Math, 1996, 20(3): 273-298.

[14]

Lian J. A. Orthogonal criteria for multiscaling functions. Appl Comp Harm Anal, 1998, 5(3): 277-311.

[15]

Lebrun J., Vetterli M. Balanced multiwavelets theory and design. IEEE Trans Signal Process, 1998, 46(4): 1119-1125.

[16]

Lebrun J., Vetterli M. High-order balanced multiwavelets: theory, factorization, and design. IEEE Trans Signal Process, 2001, 49(9): 1918-1930.

[17]

Selesnick I. W. Balanced GHM-like multiscaling functions. IEEE Trans Signal Processing Lett, 1999, 6: 111-112.

[18]

Lian J. A., Chui C. K. Balanced multiwavelets with short filters. IEEE Trans Signal Processing, 2004, 11(2): 75-78.

AI Summary AI Mindmap
PDF (144KB)

628

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/