Global regular solutions for Landau-Lifshitz equation

Boling Guo, Yongqian Han

Front. Math. China ›› 2006, Vol. 1 ›› Issue (4) : 538-568.

PDF(305 KB)
PDF(305 KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (4) : 538-568. DOI: 10.1007/s11464-006-0027-5
Research Article

Global regular solutions for Landau-Lifshitz equation

Author information +
History +

Abstract

In this note, we prove that there exists a unique global regular solution for multidimensional Landau-Lifshitz equation if the gradient of solutions can be bounded in space L2(0, T; L). Moreover, for the two-dimensional radial symmetric Landau-Lifshitz equation with Neumann boundary condition in the exterior domain, this hypothesis in space L2(0, T; L) can be cancelled.

Keywords

Landau-Lifshitz equation / global regular solution / 35Q35

Cite this article

Download citation ▾
Boling Guo, Yongqian Han. Global regular solutions for Landau-Lifshitz equation. Front. Math. China, 2006, 1(4): 538‒568 https://doi.org/10.1007/s11464-006-0027-5

References

[1.]
Landau L. D., Lifshitz E. M. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowj, 1935, 8: 153-169.
[2.]
Weinan E., Wang X. Numerical methods for the Landau-Lifshitz equation. SIAM J Numer Anal, 2000, 38(5): 1647-1665.
CrossRef Google scholar
[3.]
Fogedby H. C. Theoretical Aspects of Mainly Low Dimensional Magnetic System, 1980, Berlin, Heidelberg, New York: Springer-Verlag.
[4.]
Gustafson S., Shatah J. The stability of localize solutions of Landau-Lifshitz equations. Comm Pure Appl Math, 2002, 55(9): 1136-1159.
CrossRef Google scholar
[5.]
Hubert A., Schäfer R. Magnetic Domain—The Analysis of Magnetic Microstructures, 1998, Berlin, Heidelberg: Springer-Verlag.
[6.]
Sulem P. L., Sulem C., Bardos C. On the continuous limit for a system of classical spins. Comm Math Phys, 1986, 107: 431-454.
CrossRef Google scholar
[7.]
Zhou Yulin, Guo Boling. The weak solution of homogeneous boundary value problem for the system of ferromegnetic chain with several variable. Scientia Sinica A, 1986, (4): 337–349
[8.]
Visintin A. On Landau-Lifshitz equations for ferromagnetism. Japan J Appl Math, 1985, 2: 69-84.
CrossRef Google scholar
[9.]
Zhou Y., Guo B., Tan S. Existence and uniqueness of smooth solution for system of ferromagnetic chain. Science in China, Ser A, 1991, 34(3): 257-266.
[10.]
Chang N.-H., Shatah J., Uhlanbeck K. Schrödinger maps. Comm Pure Appl Math, 2000, 53(5): 590-602.
CrossRef Google scholar
[11.]
Daniel M., Porsezian K., Lakshmanan M. On The integrability of the inhomogeneous spherically symmetric Heisenberg ferromagnet in arbitrary dimensions. J Math Phys, 1994, 35(12): 6498-6510.
CrossRef Google scholar
[12.]
Lakshmanan M., Porsezian K. Planar radially symmetric Heisenberg spin system, and generalized nonlinear Schrödinger equation: Gauge equivalence, Bäcklund transformations and explicit solutions. Phys Lett A, 1990, 146(6): 329-334.
CrossRef Google scholar
[13.]
Guo B., Han Y., Yang G. Blow up problem for Landau-Lifshitz equations in two dimensions. Comm Nonlinear Sci Numerical Simulation, 2000, 5(1): 43-44.
CrossRef Google scholar
[14.]
Caffarelli L., Kohn R., Nirenberg L. First order interpolation inequalities with weights. Compositio Math, 1984, 53: 259-275.
[15.]
Ladysenskaya O. A. The Boundary Value Problems of Mathematical Physics, 1985, Berlin, Heidelberg, New York: Springer.
[16.]
Zhou Yulin. Applications of Discrete Functional Analysis to the Finite Difference Method. International Academic Publishers, 1991
AI Summary AI Mindmap
PDF(305 KB)

Accesses

Citations

Detail

Sections
Recommended

/