On Hochschild cohomology rings of Fibonacci algebras

Jinmei Fan , Yunge Xu

Front. Math. China ›› 2006, Vol. 1 ›› Issue (4) : 526 -537.

PDF (189KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (4) : 526 -537. DOI: 10.1007/s11464-006-0026-6
Research Article

On Hochschild cohomology rings of Fibonacci algebras

Author information +
History +
PDF (189KB)

Abstract

Let Λ be a Fibonacci algebra over a field k. The multiplication of Hochschild cohomology ring of Λ induced by the Yoneda product is described explicitly. As a consequence, the multiplicative structure of Hochschild cohomology ring of Λ is proved to be trivial.

Keywords

Fibonacci algebra / Hochschild cohomology ring / multiplicative structure / 16E40 / 16E10 / 16G10

Cite this article

Download citation ▾
Jinmei Fan, Yunge Xu. On Hochschild cohomology rings of Fibonacci algebras. Front. Math. China, 2006, 1(4): 526-537 DOI:10.1007/s11464-006-0026-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hochschild G. On the cohomology groups of an associative algebra. Ann of Math, 1946, 46: 58-67.

[2]

Siegel S. F., Witherspoon S. J. The Hochschild cohomology ring of a group algebra. London Math Soc, 1999, 79(3): 131-157.

[3]

Bustamante J. C. The Hochschild cohomology ring of string algebras. Journal of Pure and Applied Algebra, 2006, 204(3): 616-626.

[4]

Cibils C. Reiten I., Smalø S. O., Solberg Hochschild cohomology ring of radical square zero algebras. Algebras and Modules II: Eighth International Conference on Representations of Algebras, August 4–40, 1996, 1998, Geiranger, Norway: CMS Conference Proceedings, 93-101.

[5]

Bardzell M. J., Locatelli A. C., Marcos E. N. On the Hochschild cohomology of truncated cycle algebras. Communications in Algebra, 2000, 28(3): 1615-1639.

[6]

Erdmann K., Holm T. Twisted bimodules and Hochschild cohomology for self-injective algebras of class An. Forum Math, 1999, 11(2): 177-201.

[7]

Green E. L., Snashall N., Solberg The Hochschild cohomology ring of a self injective algebra of finite representation type. Proc Amer Math Soc, 2003, 131: 3387-3393.

[8]

Zhang P. Hochschild cohomology of truncated basic cycle. Science in China, Ser A, 1997, 40(12): 1272-1278.

[9]

Zhang P. Hochschild cohomology groups of truncated algebras. Science in China, Ser A, 1994, 24(11): 1121-1125.

[10]

Xu Y. G. The first cohomology group of trivial extensions of special biserial algebras. Science in China, Ser A, 2003, 6: 597-609.

[11]

Xu Y. G., Zeng X. Y. Hochschild cohomology groups of dual extensions. Acta Math Sinica, 2006, 49(1): 59-68.

[12]

Zhang P. Vanishing of the first Hochschild cohomology. Representations and Quantizations, 2000, Beijing and Berlin: Higher Education Press and Springer-Verlag, 421-440.

[13]

Skowroński A. Simply connected algebras and Hochschild cohomologies. Canad Math Proc, 1993, 14: 431-447.

[14]

Gerstenhaber M. On the deformation of rings and algebras. Ann Math, 1964, 79: 59-103.

[15]

Happel D. Hochschild cohomology of finite dimensional algebras. Lecture Notes in Math, 1989, 1404: 108-126.

[16]

Green E. L., Solberg Happel D., Zhang Y. B. Hochschild cohomology rings and triangular rings. Proceedings of the Ninth International Conference, Vol. 2, 2002, Beijing: Beijing Normal University Press, 192-200.

[17]

Green E. L., Solberg Zacharia D. Minimal projective resolutions. Trans Amer Math Soc, 2001, 353: 2915-2939.

[18]

Green E. L., Hartman G., Marcos E. N. Resolutions over Koszul algebras. Archiv der Mathematik, 2005, 85(2): 118-127.

[19]

Bardzell M. J. The alternating syzygy behavior of minimal algebras. J Algebra, 1997, 188: 69-89.

AI Summary AI Mindmap
PDF (189KB)

767

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/