Error analysis of symplectic Lanczos method for Hamiltonian eigenvalue problem

Qingyou Yan, Xiaopeng Wei

Front. Math. China ›› 2006, Vol. 1 ›› Issue (3) : 430-451.

PDF(383 KB)
PDF(383 KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (3) : 430-451. DOI: 10.1007/s11464-006-0017-7
Research Article

Error analysis of symplectic Lanczos method for Hamiltonian eigenvalue problem

Author information +
History +

Abstract

A rounding error analysis for the symplectic Lanczos method is given to solve the large-scale sparse Hamiltonian eigenvalue problem. If no breakdown occurs in the method, then it can be shown that the Hamiltonian structure preserving requirement does not destroy the essential feature of the nonsymmetric Lanczos algorithm. The relationship between the loss of J-orthogonality among the symplectic Lanczos vectors and the convergence of the Ritz values in the symmetric Lanczos algorithm is discussed. It is demonstrated that under certain assumptions the computed J-orthogonal Lanczos vectors lose the J-orthogonality when some Ritz values begin to converge. Our analysis closely follows the recent works of Bai and Fabbender.

Keywords

symplectic Lanczos method / Hamiltonian matrix / eigenvalue / error analysis / Ritz value / Ritz vector / 65G05 / 65F15 / 65F50

Cite this article

Download citation ▾
Qingyou Yan, Xiaopeng Wei. Error analysis of symplectic Lanczos method for Hamiltonian eigenvalue problem. Front. Math. China, 2006, 1(3): 430‒451 https://doi.org/10.1007/s11464-006-0017-7

References

[1.]
Lanczos C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J Res Natl Bur Stand, 1950, 45: 225-280.
[2.]
Bai Z. Error analysis of the Lanczos algorithm for nonsymmetric eigenvalue problem. Math Comp, 1994, 62: 209-226.
CrossRef Google scholar
[3.]
Golub G. H., Loan C. V. Matrix Computations, 1996 3rd ed. Baltimore: The Johns Hopkins University Press.
[4.]
Parlett B. N. The Symmetric Eigenvalue Problem, 1980, Englewood Cliffs: Prentice-Hall.
[5.]
Benner P., Mehrmann V., Xu H. A numerically stable structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils. Numer, Math, 1998, 78: 329-358.
CrossRef Google scholar
[6.]
Bunse-Gerstner A., Mehrmann V. A symplectic QR-like Algorithm for the solution of the real algebraic Riccati equation. IEEE Trans Automat Control, 1986, AC-31: 1104-1113.
CrossRef Google scholar
[7.]
Bunse-Gerstner A., Mehrmann V., Watkins D. An SR algorithm for Hamiltonian matrices, based on Gaussian elimination. Methods Oper Res, 1989, 58: 339-358.
[8.]
Olson J., Jensen H., Jorgensen P. Solution of large matrix equations which occur in response theory. J Comput Phys, 1994, 74: 265-282.
CrossRef Google scholar
[9.]
Benner P., Fabbender H. An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem. Linear Algebra Appl, 1997, 263: 75-111.
CrossRef Google scholar
[10.]
Benner P., Fabbender H. A restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem, 1995, FRG: Fak F Mathematik.
[11.]
Freund R., Mehrmann V. A symplectic look-ahead Lanczos algorithm for the Hamiltonian eigenvalue problem. AT&T Numerical Analysis Manuscript, 1994, Murray Hill, NJ: Bell Laboratories.
[12.]
Paige C. Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix. J Inst Math Appl, 1976, 18: 341-349.
[13.]
Fabbender H. Error analysis of the sympletic Lanczos method for symplectic eigenvalue problem. BIT, 2000, 40: 471-496.
CrossRef Google scholar
[14.]
Kahan W., Parlett B., Jiang E. Residual bounds on approximate eigensystems of nonnormal matrices. SIAM J Numer Anal, 1982, 19: 470-484.
CrossRef Google scholar
[15.]
Wilkinson J. H. The Algebraic Eigenvalue Problem, 1965, Oxford: Clarendon.
AI Summary AI Mindmap
PDF(383 KB)

Accesses

Citations

Detail

Sections
Recommended

/