New multiplier method for solving linear complementarity problems

Ulji , Guoqing Chen

Front. Math. China ›› 2006, Vol. 1 ›› Issue (3) : 368 -381.

PDF (197KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (3) : 368 -381. DOI: 10.1007/s11464-006-0015-9
Research Article

New multiplier method for solving linear complementarity problems

Author information +
History +
PDF (197KB)

Abstract

A new multiplier method for solving the linear complementarity problem LCP(q, M) is proposed. By introducing a Lagrangian of LCP(q, M), a new smooth merit function ϑ(x, λ) for LCP(q, M) is constructed. Based on it, a simple damped Newton-type algorithm with multiplier self-adjusting step is presented. When M is a P-matrix, the sequence {ϑ(xk, λk)} (where {(xk, λk)} is generated by the algorithm) is globally linearly convergent to zero and convergent in a finite number of iterations if the solution is degenerate. Numerical results suggest that the method is highly efficient and promising.

Keywords

linear complementarity problem / multiplier method / global linear convergence / finite convergence / 90C33

Cite this article

Download citation ▾
Ulji, Guoqing Chen. New multiplier method for solving linear complementarity problems. Front. Math. China, 2006, 1(3): 368-381 DOI:10.1007/s11464-006-0015-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ferris M. C., Pang J. S. Engineering and economic applications of complementarity problems. SIAM J Review, 1997, 39(4): 669-713.

[2]

Facchinei F., Pang J. S. Finite-dimensional Variational Inequalities and Complementarity Problems, 2003, New York: Springer-Verlag, 1-1234.

[3]

Isac G. Complementarity Problem, 1992, Berlin: Springer-Verlag, 1-297.

[4]

Cottle R. W., Pang J. S., Stone R. E. The Linear Complementarity Problem, 1992, Boston: Academic Press, 1-762.

[5]

Xiu N. H., Gao Z. Y. The new advances in methods for complementarity problems. Advances in Mathematics, 1999, 28(3): 193-210.

[6]

Chen B., Harker P. T. A non-interior-point continuation method for linear complementarity problems. SIAM Journal of Matrix Analysis and Applications, 1993, 14(4): 1168-1190.

[7]

Kanzow C. Some noninterior continuation methods for linear complementarity problems. SIAM Journal of Matrix Analysis and Applications, 1996, 17(4): 851-868.

[8]

Peng J. M., Lin Z. H. A non-interior continuation method for generalized linear complementarity problems. Mathematical Programming, 1999, 86(3): 533-563.

[9]

Qi H. D., Liao L. Z. A smoothing Newton method for extended vertical linear complementarity problems. SIAM Journal of Matrix Analysis and Applications, 1999, 21(1): 45-66.

[10]

Chen G. Q., Cao B. A new NCP-function for box constrained variational inequalities and a related Newton-type method. Mathematica Numerica Sinica, 2002, 24(1): 91-104.

[11]

Eckstein J., Ferris M. C. Smooth methods of multipliers for complementarity problems. Mathematical Programming, 1999, 86(1): 65-90.

[12]

Xiu N. H. One step quadratic convergence of noninterior continuation method for NCP. Chinese Science Bulletin, 1999, 44(20): 1858-1862.

[13]

Clarke F. H. Optimization and Nonsmooth Analysis, 1983, New York: Wiley, 1-308.

AI Summary AI Mindmap
PDF (197KB)

774

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/