Sampling theorem of Hermite type and aliasing error on the Sobolev class of functions

Hu-an Li , Gen-sun Fang

Front. Math. China ›› 2006, Vol. 1 ›› Issue (2) : 252 -271.

PDF (231KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (2) : 252 -271. DOI: 10.1007/s11464-006-0006-x
Research Article

Sampling theorem of Hermite type and aliasing error on the Sobolev class of functions

Author information +
History +
PDF (231KB)

Abstract

Denote by B2σ,p (1 < p < ∞) the bandlimited class p-integrable functions whose Fourier transform is supported in the interval [−σ, σ]. It is shown that a function in B2σ,p can be reconstructed in Lp(ℝ) by its sampling sequences {f (κπ / σ)}κ∈ℤ and {f’ (κπ / σ)}κ∈ℤ using the Hermite cardinal interpolation. Moreover, it will be shown that if f belongs to Lp r (ℝ), 1 < p < ∞, then the exact order of its aliasing error can be determined.

Keywords

Marcinkiewicz type inequality / bandlimited function / derivative sampling / Sobolev classes of functions / aliasing error / 41A05 / 41A25

Cite this article

Download citation ▾
Hu-an Li, Gen-sun Fang. Sampling theorem of Hermite type and aliasing error on the Sobolev class of functions. Front. Math. China, 2006, 1(2): 252-271 DOI:10.1007/s11464-006-0006-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nikolskii S. M. Approximation of Functions of Several Variables and Embedding Theorems, 1975, New York: Springer-Verlag.

[2]

Levin B. Ya. Lectures on Entire Functions, 1996, Providence: American Mathematical Society.

[3]

Shanon C. E. A mathematical theory of communication. Bell System Tech., 1948, 27: 379-423.

[4]

Whittaker J. M. Interpolatory Function Theory, 1935, Cambridge: Cambridge Univ. Press.

[5]

Butzer P. L. A survey of the Whattaker-Shannon sampling theorem and some of its extension. J. Math. Res. Exposition, 1983, 3: 185-212.

[6]

Butzer P. L., Splettst W. ö. A sampling theorem for duration-limited functions with error estimates. Inform. and Control, 1977, 34: 55-65.

[7]

Butzer P. L., Stens R. L. The Euler-MacLaurin summation formula, the sampling theorem, and approximate integration over the real axis. Linear Algebra Appl., 1983, 52/53: 141-155.

[8]

Butzer P. L., Stens R. L. Sampling theorem for not necessarily band-limited functions: A Historical overview. SIAM Rev., 1992, 34: 40-53.

[9]

Brown J. L. Jr. On the error estimates in reconstructing a non-bandlimited function by means of the bandpass sampling theorem. J. Math. Anal. Appl., 1967, 18: 75-84.

[10]

Fang G. S. Whittaker-Kotelnikov-Shannon sampling theorem and aliasing error. J. Approx. Theory, 1996, 85: 115-131.

[11]

Fogel L. J. A note on the sampling theorem. IRE Trans. Inform. Theory, 1955, 1: 47-48.

[12]

Jagerman D. L., Fogel L.J. Some general aspects of the sampling theorem. IEEE Trans. Inform. Theorem, 1956, 2: 139-156.

[13]

Higgins J. R. Five short stories about the cardinal series. Bull. Amer. Math. Soc., 1985, 12: 49-89.

[14]

Hinsen G. Irregular Sampling of Bandlimited Lp—functions. J. Approx. Theory, 1993, 72: 346-364.

[15]

Kress R. On the general Hermite cardinal interpolation. Mathematic of Computation, 1972, 26: 925-933.

[16]

Zygmund A., Trigonometric Series, Vol. II. 2nd ed., Cambridge: Cambridge Univ. Press

[17]

Magaril-Il’yaev G. G. Average dimension, widths and optimal recovery of Sobolev classes on the whole line. Mat. Sb., 1991, 182: 1635-1656.

[18]

Marsden M. J., Richards F.B., Riemenschneider S. D. Cardinal spline interpolation operators on Lp data. Indiana Univ. Math. J., 1975, 24: 677-689.

[19]

Boas R. P. Jr. Entire Functions, 1954, New York: Academic Press.

[20]

Rahmam Q. I., Vértesi P. On the Lp convergence of Lagrange interpolating entire functions of exponential type. J. Approx. Theory, 1992, 69: 302-317.

[21]

Fang G. S. Approximating properties of entire functions of exponential type. J. Math. Anal., 1996, 201: 642-659.

[22]

Timan A. F. Theory of Approximation of Functions of a Real Variable, 1963, Oxford: Pergamon.

[23]

Gervais R. P., Rahman Q.I. An extension of Carlson’s theorem for entire functions exponential type. Trans. Amer. Math. Soc., 1978, 235: 387-394.

AI Summary AI Mindmap
PDF (231KB)

706

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/