Sampling theorem of Hermite type and aliasing error on the Sobolev class of functions

LI Hu-an1, FANG Gen-sun2

PDF(231 KB)
PDF(231 KB)
Front. Math. China ›› 2006, Vol. 1 ›› Issue (2) : 252-271. DOI: 10.1007/s11464-006-0006-x

Sampling theorem of Hermite type and aliasing error on the Sobolev class of functions

  • LI Hu-an1, FANG Gen-sun2
Author information +
History +

Abstract

Denote by B2σ,p (1 < p < ") the bandlimited class p-integrable functions whose Fourier transform is supported in the interval [-?, ?]. It is shown that a function in B2σ,p can be reconstructed in Lp(R) by its sampling sequences {f(k?/?)}k∈Z and{f 2(k?/?)}k∈Z using the Hermite cardinal interpolation. Moreover, it will be shown that if f belongs to Lpr(R), 1 < p < ∞, then the exact order of its aliasing error can be determined.

Cite this article

Download citation ▾
LI Hu-an, FANG Gen-sun. Sampling theorem of Hermite type and aliasing error on the Sobolev class of functions. Front. Math. China, 2006, 1(2): 252‒271 https://doi.org/10.1007/s11464-006-0006-x
AI Summary AI Mindmap
PDF(231 KB)

Accesses

Citations

Detail

Sections
Recommended

/