Engineering room-temperature phosphorescence in purely organic materials through isomeric molecular packing and intermolecular interactions

Mengke Li , Zijian Chen , Kunkun Liu , Qianyu He , Shi-Jian Su

FlexMat ›› 2025, Vol. 2 ›› Issue (2) : 145 -152.

PDF
FlexMat ›› 2025, Vol. 2 ›› Issue (2) : 145 -152. DOI: 10.1002/flm2.49
ARTICLE

Engineering room-temperature phosphorescence in purely organic materials through isomeric molecular packing and intermolecular interactions

Author information +
History +
PDF

Abstract

Achieving control over room-temperature phosphorescence (RTP) performance through delicate molecular engineering and intermolecular interactions is of great significance for advancing RTP research. In this study, a series of isomers containing up to four compounds were synthesized by integrating a tetrahydroquinoline substituent at different positions of a phenoxathiine core. All compounds exhibit afterglow RTP emission in the crystalline state, attributed to diverse intermolecular interactions that stabilize triplet excitons. Notably, the variation in substitution positions leads to distinct intermolecular interactions, enabling fine-tuned RTP properties through strategic molecular engineering. Among them, the isomer 2,1-PXTACR, which exhibits robust intermolecular interactions, achieves an exceptional afterglow duration exceeding 5 s and an average phosphorescence lifetime of 310 ms. Furthermore, the specific role of the solid-state environment in stabilizing triplet excitons is systematically elucidated in this work. The molecular modulation strategy established herein provides valuable insights into the structure-property relationships governing RTP materials and offers a rational approach for developing high-performance purely organic phosphorescent systems.

Keywords

intermolecular interaction / isomeric engineering / long-lived triplet excitons / room-temperature phosphorescence / spin-orbit coupling

Cite this article

Download citation ▾
Mengke Li, Zijian Chen, Kunkun Liu, Qianyu He, Shi-Jian Su. Engineering room-temperature phosphorescence in purely organic materials through isomeric molecular packing and intermolecular interactions. FlexMat, 2025, 2(2): 145-152 DOI:10.1002/flm2.49

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Gong, H. Yu, Y. Zhang, L. Feng, Y. Tian, G. Cui, H. Fu, Angew. Chem., Int. Ed. 2023, 62, e202219085.

[2]

X. Yang, D. Yan, Chem. Sci. 2016, 7, 4519.

[3]

J. Guo, C. Yang, Y. Zhao, Acc. Chem. Res. 2022, 55, 1160.

[4]

H. Shi, W. Yao, W. Ye, H. Ma, W. Huang, Z. An, Acc. Chem. Res. 2022, 55, 3445.

[5]

J. Zhang, S. Zhang, C. Sun, R. Wang, Z. Guo, D. Cui, G. Tang, D. Li, J. Yuan, X. Lu, C. Zheng, W. Huang, R. Chen, Adv. Mater. 2025, 2500953.

[6]

L. Ma, Y. Liu, X. Jin, T. Jiang, L. Zhou, Q. Wang, H. Tian, X. Ma, Angew. Chem., Int. Ed. 2025, 64, e202500847.

[7]

M. Gao, R. Wu, Y. Zhang, Y. Meng, M. Fang, J. Yang, Z. Li, J. Am. Chem. Soc. 2025, 147, 2653.

[8]

D. Cui, L. Zhang, J. Zhang, W. Li, J. Chen, Z. Guo, C. Sun, Y. Wang, W. Wang, S. Li, W. Huang, C. Zheng, R. Chen, Angew. Chem., Int. Ed. 2024, 63, e202411588.

[9]

H. Li, H. Ma, P. Zhang, Z. An, X. He, Angew. Chem., Int. Ed. 2025, 64, e202419366.

[10]

Y. Gao, W. Ye, K. Qiu, X. Zheng, S. Yan, Z. Wang, Z. An, H. Shi, W. Huang, Adv. Mater. 2023, 35, 2306501.

[11]

S. Zhao, Z. Yang, X. Zhang, H. Liu, Y. Lv, S. Wang, Z. Yang, S.-T. Zhang, B. Yang, Chem. Sci. 2023, 14, 9733.

[12]

D. Li, J. Yang, M. M. Fang, B. Z. Tang, Z. Li, Sci. Adv. 2022, 8, eabl8392.

[13]

Z. He, J. Song, C. Li, Z. Huang, W. Liu, X. Ma, Adv. Mater. 2025, 2418506.

[14]

S. K. Lower, M. A. El-Sayed, Chem. Rev. 1966, 66, 199.

[15]

S. Hirata, Adv. Opt. Mater. 2017, 5, 1700116.

[16]

M. Li, X. Cai, Z. Qiao, K. Liu, W. Xie, L. Wang, N. Zheng, S.-J. Su, Chem. Commun. 2019, 55, 7215.

[17]

B. Du, Y. Wu, X. Wang, H. Tian, S. Shao, L. Wang, Chem. Sci. 2024, 15, 19432.

[18]

M. Li, W. Xie, X. Cai, X. Peng, K. Liu, Q. Gu, J. Zhou, W. Qiu, Z. Chen, Y. Gan, S.-J. Su, Angew. Chem., Int. Ed. 2022, 61, e202209343.

[19]

Z. Chen, M. Li, Q. Gu, X. Peng, W. Qiu, W. Xie, D. Liu, Y. Jiao, K. Liu, J. Zhou, S.-J. Su, Adv. Sci. 2023, 10, 2207003.

[20]

X. Song, G. Lu, Y. Man, J. Zhang, S. Chen, C. Han, H. Xu, Angew. Chem., Int. Ed. 2023, 62, e202300980.

[21]

X. Zou, N. Gan, Y. Gao, L. Gu, W. Huang, Angew. Chem., Int. Ed. 2025, 64, e202417906.

[22]

C. L. Tu, W. H. Wu, W. T. Liang, D. J. Zhang, W. Xu, S. G. Wan, W. Lu, C. Yang, Angew. Chem., Int. Ed. 2022, 61, e202203541.

[23]

M. Li, X. Cai, Z. Chen, K. Liu, W. Qiu, W. Xie, L. Wang, S.-J. Su, Chem. Sci. 2021, 12, 13580.

[24]

D. Chen, W. Li, L. Gan, Z. Wang, M. Li, S.-J. Su, Mater. Sci. Eng., R 2020, 142, 100581.

[25]

W. Huang, Y. Zhu, X. Xie, G. Tang, K. Zhou, L. Song, Z. He, Chem. Sci. 2024, 15, 12316.

[26]

Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685.

[27]

Z. Zhao, T. Zhu, A. Li, Q. Zhang, W. Z. Yuan, Angew. Chem., Int. Ed. 2025, 64, e202412967.

[28]

W. Xie, W. Huang, J. Li, Z. He, G. Huang, B. S. Li, B. Z. Tang, Nat. Commun. 2023, 14, 8098.

[29]

H. Sasabe, Y. Kato, Y. Watanabe, T. Ohsawa, N. Aizawa, W. Fujiwara, Y.-J. Pu, H. Katagiri, J. Kido, Chem. Eur. J. 2019, 25, 16294.

[30]

G. Xie, N. Guo, X. Xue, Q. Yang, X. Liu, H. Li, H. Li, Y. Tao, R. Chen, W. Huang, J. Am. Chem. Soc. 2024, 146, 20449.

[31]

D. Zhong, S. Liu, L. Yue, Z. Feng, H. Wang, P. Yang, B. Su, X. Yang, Y. Sun, G. Zhou, Chem. Sci. 2024, 15, 9112.

[32]

Y. Tao, C. Liu, Y. Xiang, Z. Wang, X. Xue, P. Li, H. Li, G. Xie, W. Huang, R. Chen, J. Am. Chem. Soc. 2022, 144, 6946.

[33]

H. Zheng, Z. Zhang, S. Cai, Z. An, W. Huang, Adv. Mater. 2024, 36, 2311922.

[34]

J. Cui, S. H. Ali, Z. Shen, W. Xu, J. Liu, P. Li, Y. Li, L. Chen, B. Wang, Chem. Sci. 2024, 15, 4171.

[35]

Z. Yang, H. Liu, X. Zhang, Y. Lv, Z. Fu, S. Zhao, M. Liu, S.-T. Zhang, B. Yang, Adv. Mater. 2024, 36, 2306784.

[36]

Q. Li, Z. Li, Acc. Chem. Res. 2020, 53, 962.

[37]

C. Si, T. Wang, A. K. Gupta, D. B. Cordes, A. M. Z. Slawin, J. S. Siegel, E. Zysman-Colman, Angew. Chem., Int. Ed. 2023, 62, e202309718.

[38]

Y. Zhang, X. Chen, J. Xu, Q. Zhang, L. Gao, Z. Wang, L. Qu, K. Wang, Y. Li, Z. Cai, Y. Zhao, C. Yang, J. Am. Chem. Soc. 2022, 144, 6107.

[39]

L. Ma, S. Sun, B. Ding, X. Ma, H. Tian, Adv. Funct. Mater. 2021, 31, 2010659.

[40]

J. Ren, Y. Wang, Y. Tian, Z. Liu, X. Xiao, J. Yang, M. Fang, Z. Li, Angew. Chem., Int. Ed. 2021, 60, 12335.

[41]

X. Cai, X. Li, G. Xie, Z. He, K. Gao, K. Liu, D. Chen, Y. Cao, S.-J. Su, Chem. Sci. 2016, 7, 4264.

[42]

L. W. Chung, W. M. C. Sameera, R. Ramozzi, A. J. Page, M. Hatanaka, G. P. Petrova, T. V. Harris, X. Li, Z. Ke, F. Liu, H.-B. Li, L. Ding, K. Morokuma, Chem. Rev. 2015, 115, 5678.

[43]

P. Alam, N. L. C. Leung, J. Liu, T. S. Cheung, X. Zhang, Z. He, R. T. K. Kwok, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, C. C. S. Chan, K. S. Wong, Q. Peng, B. Z. Tang, Adv. Mater. 2020, 32, 2001026.

[44]

J. Fan, Y. Zhang, Y. Ma, Y. Song, L. Lin, Y. Xu, C.-K. Wang, J. Mater. Chem. C 2020, 8, 8601.

[45]

Q. Peng, Y. Yi, Z. Shuai, J. Shao, J. Chem. Phys. 2007, 126, 114302.

[46]

Q. Peng, Y. Yi, Z. Shuai, J. Shao, J. Am. Chem. Soc. 2007, 129, 9333.

[47]

Y. Niu, Q. Peng, C. Deng, X. Gao, Z. Shuai, J. Phys. Chem. A 2010, 114, 7817.

[48]

Z. Shuai, Chin. J. Chem. 2020, 38, 1223.

[49]

M. A. Spackman, P. G. Byrom, Chem. Phys. Lett. 1997, 267, 215.

[50]

M. A. Spackman, D. Jayatilaka, CrystEngComm 2009, 11, 19.

[51]

T. Lu, F. Chen, J. Mol. Graphics Modell. 2012, 38, 314.

[52]

T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

[53]

L. Xiao, H. Fu, Chem. Eur. J. 2018, 24, 1.

[54]

M. Zeng, W. Wang, S. Zhang, Z. Gao, Y. Yan, Y. Liu, Y. Qi, X. Yan, W. Zhao, X. Zhang, N. Guo, H. Li, H. Li, G. Xie, Y. Tao, R. Chen, W. Huang, Nat. Commun. 2024, 15, 3053.

RIGHTS & PERMISSIONS

2025 The Author(s). FlexMat published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Posts & Telecommunications.

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/