A switchable multifunctional artificial neuron with rate coding and time-to-first-spike coding for accurate image recognition

Weiqi Liu , Chenhui Xu , Weidong Xie , Jiabin Ye , Zhiwei Zhu , Zhenyuan Lin , Huipeng Chen

FlexMat ›› 2025, Vol. 2 ›› Issue (2) : 153 -164.

PDF
FlexMat ›› 2025, Vol. 2 ›› Issue (2) : 153 -164. DOI: 10.1002/flm2.48
ARTICLE

A switchable multifunctional artificial neuron with rate coding and time-to-first-spike coding for accurate image recognition

Author information +
History +
PDF

Abstract

Inspired by the structure and principles of the human brain, the development of artificial neurons for spiking neural network (SNN) has been stimulated. Threshold switching memristors offer a viable pathway for the emulation of biological neurons. However, existing artificial neurons primarily rely on a singular data coding scheme, which diminishes the capacity of artificial neurons as computational units within SNN. In this study, we introduce a switchable multifunctional artificial neuron (SMAN) capable of encoding information via varying spiking frequencies (rate coding) and time-to-first-spike coding. SMAN leverages the conductive filament conduction mechanism and stress characteristics of materials to achieve varying ionic dynamics by simply altering the position of the electrode contacts. Finally, an SNN based on SMAN has been designed, demonstrating effective performance in the Modified National Institute of Standards and Technology image classification task under both initial and noise-added conditions. This device-level selective coding scheme significantly enhances the capability of SNN to recognize various types of images. We believe that our successful implementation will promote the universality of artificial neurons across various tasks, bringing innovation and development to the field of neuromorphic hardware.

Keywords

artificial neurons / encodings / image recognition / multifunction / resistive switching / spiking neural network

Cite this article

Download citation ▾
Weiqi Liu, Chenhui Xu, Weidong Xie, Jiabin Ye, Zhiwei Zhu, Zhenyuan Lin, Huipeng Chen. A switchable multifunctional artificial neuron with rate coding and time-to-first-spike coding for accurate image recognition. FlexMat, 2025, 2(2): 153-164 DOI:10.1002/flm2.48

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. D. Cox, T. Dean, Curr. Biol. 2014, 24, R921.

[2]

R. Yang, H. M. Huang, X. Guo, Adv. Electron. Mater. 2019, 5, 1900287.

[3]

Q. Duan, Z. Jing, X. Zou, Y. Wang, K. Yang, T. Zhang, S. Wu, R. Huang, Y. Yang, Nat. Commun. 2020, 11, 3399.

[4]

R. Yu, L. He, C. Gao, X. Zhang, E. Li, T. Guo, W. Li, H. Chen, Nat. Commun. 2022, 13, 7019.

[5]

X. Yan, X. Jia, Y. Zhang, S. Shi, L. Wang, Y. Shao, Y. Sun, S. Sun, Z. Zhao, J. Zhao, J. Sun, Z. Guo, Z. Guan, Z. Zhang, X. Han, J. Chen, Nano Energy 2023, 107, 108091.

[6]

X. Zhang, D. Liu, S. Liu, Y. Cai, L. Shan, C. Chen, H. Chen, Y. Liu, T. Guo, H. Chen, Adv. Mater. 2024, 36, 2401821.

[7]

J. W. Pillow, J. Shlens, L. Paninski, A. Sher, A. M. Litke, E. J. Chichilnisky, E. P. Simoncelli, Nature 2008, 454, 995.

[8]

A. Azarfar, N. Calcini, C. Huang, F. Zeldenrust, T. Celikel, Neurosci. Biobehav. Rev. 2018, 94, 238.

[9]

J. Q. Yang, R. Wang, Y. Ren, J. Y. Mao, Z. P. Wang, Y. Zhou, S. T. Han, Adv. Mater. 2020, 32, 2003610.

[10]

Y. Liu, D. Liu, C. Gao, X. Zhang, R. Yu, X. Wang, E. Li, Y. Hu, T. Guo, H. Chen, Nat. Commun. 2022, 13, 7917.

[11]

H. Liu, X. Zhu, Z. Guo, R. He, X. Li, Q. Sun, X. Ye, C. Sun, Y. Tian, R. W. Li, ACS Appl. Electron. Mater. 2023, 5, 3454.

[12]

E. T. Rolls, A. Treves, Prog. Neurobiol. 2011, 95, 448.

[13]

S. Subbulakshmi Radhakrishnan, A. Sebastian, A. Oberoi, S. Das, S. Das, Nat. Commun. 2021, 12, 2143.

[14]

S. Panzeri, N. Brunel, N. K. Logothetis, C. Kayser, Trends Neurosci. 2010, 33, 111.

[15]

A. A. Fida, F. A. Khanday, S. Mittal, Neurocomputing 2023, 533, 61.

[16]

H. P. Saal, S. Vijayakumar, R. S. Johansson, J. Neurosci. 2009, 29, 8022.

[17]

H. T. Chen, K. T. Ng, A. Bermak, M. K. Law, D. Martinez, IEEE Trans. Biomed. Circuits Syst. 2011, 5, 160.

[18]

Y. C. Chien, H. Xiang, Y. Shi, N. T. Duong, S. Li, K. W. Ang, Adv. Mater. 2022, 35, 2204949.

[19]

F. Huang, X. Sun, Y. Shi, L. Pan, FlexMat 2024, 2, 30.

[20]

J. Wu, S. Zhang, Q. Gu, Q. Zhang, FlexMat 2024, 1, 160.

[21]

F. D. Wang, M. X. Yu, X. D. Chen, J. Li, Z. C. Zhang, Y. Li, G. X. Zhang, K. Shi, L. Shi, M. Zhang, T. B. Lu, J. Zhang, SmartMat 2022, 4, e1135.

[22]

X. Zhu, C. Gao, Y. Ren, X. Zhang, E. Li, C. Wang, F. Yang, J. Wu, W. Hu, H. Chen, Adv. Mater. 2023, 35, 2301468.

[23]

C. Gao, D. Liu, C. Xu, W. Xie, X. Zhang, J. Bai, Z. Lin, C. Zhang, Y. Hu, T. Guo, H. Chen, Nat. Commun. 2024, 15, 740.

[24]

W. Yi, K. K. Tsang, S. K. Lam, X. Bai, J. A. Crowell, E. A. Flores, Nat. Commun. 2018, 9, 4661.

[25]

J. Huo, H. Yin, Y. Zhang, X. Tan, Y. Mao, C. Zhang, F. Zhang, G. Zhan, Z. Zhang, Q. Zhang, G. Xu, Z. Wu, ACS Appl. Mater. Interfaces 2022, 14, 57440.

[26]

L. Shan, Q. Chen, R. Yu, C. Gao, L. Liu, T. Guo, H. Chen, Nat. Commun. 2023, 14, 2648.

[27]

J. Zhao, Y. Ran, Y. Pei, Y. Wei, J. Sun, Z. Zhang, J. Wang, Z. Zhou, Z. Wang, Y. Sun, X. Yan, Mater. Horizons 2023, 10, 4521.

[28]

Z. Chen, Z. Lin, J. Yang, C. Chen, D. Liu, L. Shan, Y. Hu, T. Guo, H. Chen, Nat. Commun. 2024, 15, 1930.

[29]

T. Fu, X. Liu, S. Fu, T. Woodard, H. Gao, D. R. Lovley, J. Yao, Nat. Commun. 2021, 12, 3351.

[30]

G. Lee, J. H. Baek, F. Ren, S. J. Pearton, G. H. Lee, J. Kim, Small 2021, 17, 2100640.

[31]

J. K. Han, S. Y. Yun, S. W. Lee, J. M. Yu, Y. K. Choi, Adv. Funct. Mater. 2022, 32, 2204102.

[32]

H. Liu, Y. Qin, H. Y. Chen, J. Wu, J. Ma, Z. Du, N. Wang, J. Zou, S. Lin, X. Zhang, Y. Zhang, H. Wang, Adv. Mater. 2023, 35, 2205047.

[33]

K. Roy, A. Jaiswal, P. Panda, Nature 2019, 575, 607.

[34]

A. Taherkhani, A. Belatreche, Y. Li, G. Cosma, L. P. Maguire, T. M. McGinnity, Neural Netw. 2020, 122, 253.

[35]

J. K. Eshraghian, M. Ward, E. O. Neftci, X. Wang, G. Lenz, G. Dwivedi, M. Bennamoun, D. S. Jeong, W. D. Lu, Proc. IEEE 2023, 111, 1016.

[36]

Q. Wu, B. Dang, C. Lu, G. Xu, G. Yang, J. Wang, X. Chuai, N. Lu, D. Geng, H. Wang, L. Li, Nano Lett. 2020, 20, 8015.

[37]

S. Oh, D. Kwon, G. Yeom, W. M. Kang, S. Lee, S. Y. Woo, J. Kim, J. H. Lee, IEEE Access 2022, 10, 24444.

[38]

S. Subbulakshmi Radhakrishnan, S. Chakrabarti, D. Sen, M. Das, T. F. Schranghamer, A. Sebastian, S. Das, Adv. Mater. 2022, 34, 2202535.

[39]

F. Wang, F. Hu, M. Dai, S. Zhu, F. Sun, R. Duan, C. Wang, J. Han, W. Deng, W. Chen, M. Ye, S. Han, B. Qiang, Y. Jin, Y. Chua, N. Chi, S. Yu, D. Nam, S. H. Chae, Z. Liu, Q. J. Wang, Nat. Commun. 2023, 14, 1938.

[40]

X. Su, B. Zhang, C. Liang, M. Tian, T. Zhang, Z. Bian, J. Miao, Q. Yang, Y. Xu, B. Yu, Y. Chai, P. Lin, Y. Zhao, Adv. Funct. Mater. 2024, 34, 2315323.

[41]

Y. Zhu, X. Wan, J. Yan, L. Zhu, R. Li, C. Tan, Z. Yu, L. Sun, S. Yan, Y. Xu, H. Sun, Adv. Electron. Mater. 2024, 10, 2300565.

[42]

J. G. Jefferys, Physiol. Rev. 1995, 75, 689.

[43]

L. G. W. Hilgenberg, H. Su, H. Gu, D. K. O'Dowd, M. A. Smith, Cell 2006, 125, 359.

[44]

Y. Ji, Y. Yang, S. K. Lee, G. Ruan, T. W. Kim, H. Fei, S. H. Lee, D. Y. Kim, J. Yoon, J. M. Tour, ACS Nano 2016, 10, 7598.

[45]

Y. Wang, G. Zhou, B. Sun, W. Wang, J. Li, S. Duan, Q. Song, J. Phys. Chem. Lett. 2022, 13, 8019.

[46]

S. Ambrogio, S. Balatti, S. Choi, D. Ielmini, Adv. Mater. 2014, 26, 3885.

[47]

T. Jung, S. Jeon, J. Vac. Sci. Technol. B 2022, 40, 042201.

[48]

J. Oh, S. Kim, C. Lee, J. H. Cha, S. Y. Yang, S. G. Im, C. Park, B. C. Jang, S. Y. Choi, Adv. Mater. 2023, 35, 2300023.

RIGHTS & PERMISSIONS

2025 The Author(s). FlexMat published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Posts & Telecommunications.

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/