Exploring the application of ferroelectret nanogenerators in medical engineering

Xianfa Cai , Xiaowen Han , Jiaqi Xie , Yunqi Cao , Wei Li

FlexMat ›› 2025, Vol. 2 ›› Issue (2) : 204 -224.

PDF
FlexMat ›› 2025, Vol. 2 ›› Issue (2) : 204 -224. DOI: 10.1002/flm2.44
REVIEW

Exploring the application of ferroelectret nanogenerators in medical engineering

Author information +
History +
PDF

Abstract

Flexible devices derived from piezoelectric materials have gained considerable attention due to their exceptional biocompatibility. Among these, ferroelectret nanogenerators (FENG) is a novel type of flexible piezoelectric device that integrates self-powering, actuation, and sensing capabilities. Its potential applications within the realm of human physiological medicine are continuously expanding. Given the increasing public emphasis on health, demand is escalating for devices that can monitor human activity indicators and reflect the state of bodily functions. In this context, flexible devices with superior biocompatibility have become increasingly valuable for medical testing, sports training guidance, and physical exercise. Due to its exceptional flexibility, high sensitivity, significant piezoelectric coefficient, and excellent biocompatibility, FENG has garnered considerable attention in medical applications, demonstrating strong potential for accurately detecting human physiological activities. Therefore, an in-depth exploration of FENG's applications in medical testing and auxiliary treatment carries significant practical implications. However, current research on FENG's application in the medical field lacks comprehensive understanding and systematic evaluation. This paper aims to review the most recent advancement in the application of FENG in medical settings. By presenting a wide variety of application examples and systematic evaluations, we aim to demonstrate that FENG can meet the personalized needs of the medical application field. First, this paper introduces the working principle of FENG and its fabrication methods, followed by an introduction to FENG's applications in four major human physiological systems: blood circulation, respiration, muscle movement, and nerve reflexes. Finally, potential directions for further development of FENG and the challenges faced are discussed.

Keywords

blood circulation / ferroelectret nanogenerators / medical applications / muscle activity / neural reflex / physiological movement monitoring / respiratory system

Cite this article

Download citation ▾
Xianfa Cai, Xiaowen Han, Jiaqi Xie, Yunqi Cao, Wei Li. Exploring the application of ferroelectret nanogenerators in medical engineering. FlexMat, 2025, 2(2): 204-224 DOI:10.1002/flm2.44

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Puente-Maestu, Pulmonology 2020, 26, 159.

[2]

N. B. Tiller, S. T. Chiesa, J. D. Roberts, L. A. Turner, S. Jones, L. M. Romer, Front. Physiol. 2019, 10, 589.

[3]

K. Nakagawa, A. J. Bergquist, T. Yamashita, T. Yoshida, K. M. Masani, Neurosci. Lett. 2020, 736, 25.

[4]

B. Wieland, M. Behringer, K. Zentgraf, Int. J. Psychophysiol. 2022, 174, 57.

[5]

K. Verboven, D. Hansen, Sports Med 2020, 51, 379.

[6]

J. L. Taylor, A. R. Bonikowske, T. P. Olson, Front. Cardiovasc. Med. 2021, 8, 734278.

[7]

A. Nicolò, C. Massaroni, E. Schena, M. Sacchetti, Sensors-Basel 2020, 20, 6396.

[8]

C. W. Zhang, et al., Med-X 2024, 2, 20.

[9]

J. Yin, S. Wang, T. Tat, J. Chen, Nat. Rev. Bioeng. 2024, 2, 541.

[10]

J. Wen, C. Chen, J. Cardiovasc. Transl. 2023, 17, 56.

[11]

J. B. Eising, C. K. van der Ent, A. J. Teske, M. M. Vanderschuren, C. S. Uiterwaal, F. J. Meijboom, J. Cyst. Fibros. 2018, 17, 643.

[12]

L. Jiang, Y. Yang, R. Chen, G. Lu, R. Li, M. S. Humayun, K. K. Shung, J. Zhu, Y. Chen, Q. Zhou, Nano Energy 2019, 56, 216.

[13]

C. Bignier, et al., Paediatr. Respir. Rev. 2024, 149, 70515.

[14]

X. Mo, H. Zhou, W. Li, Z. Xu, J. Duan, L. Huang, B. Hu, J. Zhou, Nano Energy 2019, 65, 104033.

[15]

K. Yoshimura, W. Mengyan, S. Kume, T. Kurokawa, S. Miyamoto, Y. Mizukami, K. Ono, Heart Vessels 2024, 39, 464.

[16]

L. Huang, et al., Microelectron. Eng. 2024, 112127, 284.

[17]

W. N. Dewi, S. Safri, I. H. Rosma, Sci. Rep-Uk 2022, 12, 7934.

[18]

K. Li, J. Zhang, X. Liu, M. Zhang, BioMed. Eng. OnLine. 2019, 18, 31.

[19]

S. Mandekar, A. Holland, M. Thielen, M. Behbahani, M. Melnykowycz, Sensors-Basel 2022, 22, 1568.

[20]

G. S. Lakshmi, K. S. Rao, Microsyst. Technol. 2024, 30, 1581.

[21]

B. Chen, L. Zhang, H. Li, X. Lai, X. Zeng, J. Colloid. Interf. Sci. 2022, 617, 478.

[22]

T. Alam, F. Saidane, A. a. Faisal, A. Khan, G. Hossain, Sensor. Actuat. A-Phys. 2022, 341, 113587.

[23]

Y. Yuan, et al., Biosens 2022, 12, 1069.

[24]

H. Long, Q. Li, S. Peng, S. Chen, T. Zhang, M. Zhang, M. Li, L. Chen, Processes 2022, 10, 961.

[25]

L. Ma, M. Zhou, R. Wu, A. Patil, H. Gong, S. Zhu, T. Wang, Y. Zhang, S. Shen, K. Dong, L. Yang, J. Wang, W. Guo, Z. L. Wang, Acs Nano 2020, 14, 4716.

[26]

Z. Cen, F. Robinson, G. Nejat, H. E. Naguib, IEEE-Asme. T. Mech. 2024, 4, 1.

[27]

Tong, K. Zhang, Q. Chen, J. Wang, H. & Wang, T. Acs Appl. Electron. Ma. 2022, 4, 3549-3559.

[28]

A. T. Güntner, S. Abegg, K. Königstein, P. A. Gerber, A. Schmidt-Trucksäss, S. E. Pratsinis, Acs Sensors 2019, 4, 268.

[29]

A. Miyamoto, S. Lee, N. F. Cooray, S. Lee, M. Mori, N. Matsuhisa, H. Jin, L. Yoda, T. Yokota, A. Itoh, M. Sekino, H. Kawasaki, T. Ebihara, M. Amagai, T. Someya, Nat. Nanotechnol. 2017, 12, 907.

[30]

K. Meng, et al., Adv. Funct. Mater. 2024, 34, 2403163.

[31]

Y. Li, et al., Adv. Sci. 2023, 10, 2206982.

[32]

C. M. Boutry, L. Beker, Y. Kaizawa, C. Vassos, H. Tran, A. C. Hinckley, R. Pfattner, S. Niu, J. Li, J. Claverie, Z. Wang, J. Chang, P. M. Fox, Z. Bao, Nat. Biomed. Eng. 2019, 3, 47.

[33]

Z. L. Wang, J. J. S. Song, Science 2006, 312, 242.

[34]

Z. L. Wang, Nano Energy 2018, 54, 477.

[35]

L. Lu, W. Ding, J. Liu, B. Yang, Nano Energy 2020, 78, 105251.

[36]

Z. L. Wang, Nano Energy 2020, 68, 104272.

[37]

J. Yin, V. Kashyap, S. Wang, X. Xiao, T. Tat, J. Chen, Device 2024, 2, 100252.

[38]

Y. Cao, J. Figueroa, W. Li, Z. Chen, Z. L. Wang, N. Sepúlveda, Nano Energy 2019, 63, 103852.

[39]

F. Ram, K. Suresh, A. Torris, G. Kumaraswamy, K. Shanmuganathan, Ceram. Int. 2021, 47, 15750.

[40]

X. Lu, L. Zheng, H. Zhang, W. Wang, Z. L. Wang, C. Sun, Nano Energy 2020, 78, 105359.

[41]

S. Kang, et al., Sci. Adv. 2018, 4, 8772.

[42]

Z. Liu, et al., Adv. Funct. Mater. 2019, 29, 1807560.

[43]

Y. Chu, et al., Adv. Funct. Mater. 2018, 28, 1803413.

[44]

Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan, S. Wang, H. Liu, Z. Li, Z. L. Wang, Adv. Mater. 2014, 26, 5851.

[45]

Q. Zheng, H. Zhang, B. Shi, X. Xue, Z. Liu, Y. Jin, Y. Ma, Y. Zou, X. Wang, Z. An, W. Tang, W. Zhang, F. Yang, Y. Liu, X. Lang, Z. Xu, Z. Li, Z. L. Wang, Acs Nano 2016, 10, 6510.

[46]

X. Cheng, L. Miao, Y. Song, Z. Su, H. Chen, X. Chen, J. Zhang, H. Zhang, Nano Energy 2017, 38, 438.

[47]

X. Cheng, W. Tang, Y. Song, H. Chen, H. Zhang, Z. L. Wang, Nano Energy 2019, 61, 517.

[48]

F. Xi, Y. Pang, W. Li, T. Jiang, L. Zhang, T. Guo, G. Liu, C. Zhang, Z. L. Wang, Nano Energy 2017, 37, 168.

[49]

K. H. Lee, Y. Z. Zhang, Q. Jiang, H. Kim, A. A. Alkenawi, H. N. Alshareef, Acs Nano 2020, 14, 3199.

[50]

W. Li, et al., Nat. Commun. 2017, 8, 15310.

[51]

W. Li, D. Torres, T. Wang, C. Wang, N. J. N. e. Sepúlveda, Nano Energy 2016, 30, 649.

[52]

X. Li, et al., Front. Neurosci-Switz 2022, 15, 2021.

[53]

P. Fang, X. Ma, X. Li, X. Qiu, R. Gerhard, X. Zhang, G. Li, IEEE Sens. J. 2018, 18, 401.

[54]

S. Bauer, R. Gerhard-Multhaupt, G. M. Sessler, Phys. Today 2004, 57, 37.

[55]

S. Bauer, IEEE T. Dielect. El. In. 2006, 13, 953.

[56]

X. Qiu, J. Appl. Phys. 2010, 108, 059905.

[57]

A. Mohebbi, F. Mighri, A. Ajji, D. Rodrigue, Adv. Polym.Tech. 2018, 37, 468.

[58]

X. Ma, et al., Aip. Adv 2019, 9, 125334.

[59]

Y. Cao, W. Li, J. Figueroa, T. Wang, D. Torres, C. Wang, Z. L. Wang, N. Sepúlveda, Nano Energy 2018, 43, 278.

[60]

Y. Cao, J. Figueroa, J. J. Pastrana, W. Li, Z. Chen, Z. L. Wang, N. Sepúlveda, Acs Appl. Mater. Inter. 2019, 11, 17400.

[61]

Y. Cao, W. Li, N. Sepulveda, IEEE Sens. J. 2019, 19, 10327.

[62]

W. Li, et al., Adv. Funct. Mater. 2016, 26, 1964.

[63]

M. Wegener, S. Bauer, Chemphyschem 2005, 6, 1014.

[64]

F. Yuan, W. Li, S. Lin, N. Wu, S. Chen, J. Zhong, Z. Xu, X. Li, Y. Xiao, L. Huang, Nanoscale 2017, 9, 18529.

[65]

S. R. Anton, K. M. Farinholt, A. Erturk, J. Intel. Mat. Syst. Str. 2014, 25, 1681.

[66]

H. Wan, Y. Cao, L. W. Lo, J. Zhao, N. Sepúlveda, C. Wang, Acs Nano 2020, 14, 10402.

[67]

M. Zhang, J. Shi, S. P. Beeby, IEEE 2021, 7, 184.

[68]

J. Shi, Z. Luo, Z. Dibin, S. Beeby, Smart Mater. Struct. 2019, 28, 075010.

[69]

K. Kirjavainen, U.S. Patent 1986.

[70]

Z. Luo, D. Zhu, J. Shi, S. Beeby, C. Zhang, P. Proynov, B. Stark, IEEE T. Dielect. El. In 2015, 22, 1360.

[71]

R. Gerhard-Multhaupt, IEEE T. Dielect. El. In 2002, 9, 850.

[72]

X. Zhang, P. Pondrom, G. M. Sessler, X. Ma, Nano Energy 2018, 50, 52.

[73]

Y. Wang, X. Cai, Y. Guo, Z. Chen, Y. Cao, W. Du, T. Xia, N. Sepulveda, W. Li, Nano Trends 2024, 8, 100053.

[74]

J. Zhong, et al., Adv. Mater. 2021, 34, 2107758.

[75]

J. Nie, M. Ji, Y. Chu, X. Meng, Y. Wang, J. Zhong, L. Lin, Nano Energy 2019, 58, 528.

[76]

J. Zhong, Q. Zhong, X. Zang, N. Wu, W. Li, Y. Chu, L. Lin, Nano Energy 2017, 37, 268.

[77]

M. Wegener, W. Wirges, R. J. Gerhard-Multhaupt, Adv. Eng. Mater. 2005, 7, 1128.

[78]

X. Zhang, et al., Appl. Phys. Lett. 2007, 91, 182901.

[79]

Y. Xue, X. Zhang, R. Chadda, G. M. Sessler, M. Kupnik, J. Acoust. Soc. Am. 2020, 147, 421.

[80]

S. Zhukov, S. Fedosov, H. von Seggern, J. Phys. D. Appl. Phys. 2011, 44, 105501.

[81]

H. von Seggern, S. Zhukov, S. Fedosov, E. IEEE T. Dielect. El. In 2011, 18, 49.

[82]

H. Von Seggern, S. Zhukov, S. Fedosov, E. IEEE T. Dielect. El. In 2010, 17, 1056.

[83]

N. Wang, et al., Small 2021, 17, 2103161.

[84]

L. Han, W. Liang, Y. Liu, W. Zeng, J. Wang, Z. Yang, Q. Zhou, Y. Dong, X. Wang, Appl. Mater. Today 2024, 36, 102077.

[85]

H. von Seggern, S. Zhukov, O. B. Dali, C. Hartmann, G. M. Sessler, M. Kupnik, Polymers-Basel 2021, 13, 3751.

[86]

Z. Song, X. Cai, Y. Wang, W. Yang, W. Li, Micromachines-Basel 2023, 14, 2145.

[87]

S. Bauer, R. Gerhard-Multhaupt, G. M. Sessler, Appl. Phys. Lett. 2004, 57, 37.

[88]

J. A. Paradiso, T. Starner, IEEE Pervas. Comput. 2005, 4, 18.

[89]

C. Dagdeviren, Y. Shi, P. Joe, R. Ghaffari, G. Balooch, K. Usgaonkar, O. Gur, P. L. Tran, J. R. Crosby, M. Meyer, Y. Su, R. Chad Webb, A. S. Tedesco, M. J. Slepian, Y. Huang, J. A. Rogers, Nat. Mater. 2015, 14, 728.

[90]

L. a. Zhang, Q. Chen, X. Huang, X. Jia, B. Cheng, L. Wang, Y. Qin, Acs Appl. Mater. Inter. 2021, 13, 46840.

[91]

J. Xiong, G. Thangavel, J. Wang, X. Zhou, P. Lee, Sci. Adv. 2020, 6, 4246.

[92]

J. Quirce, L. Svilainis, J. Camacho, T. J. A. S. Gomez Alvarez-Arenas, Appl. Sci. 2020, 10, 8771.

[93]

X. Li, et al., J. Appl. Polym. Sci. 2021, 138, 50406.

[94]

M. Moreira, I. N. Soares, Y. A. O. Assagra, F. S. I. Sousa, T. M. Nordi, D. M. Dourado, R. H. Gounella, J. P. Carmo, R. A. C. Altafim, R. A. P. Altafim, IEEE Sens. J. 2021, 21, 22317.

[95]

Y. Zhang, C. R. Bowen, S. K. Ghosh, D. Mandal, H. Khanbareh, M. Arafa, C. Wan, Nano Energy 2019, 57, 118.

[96]

X. Ma, et al., Nano Energy 2022, 103, 107729.

[97]

P. Fang, X. C. Ma, X. X. Li, X. L. Qiu, R. Gerhard, X. Q. Zhang, G. L. Li, IEEE Sens. J. 2017, 18, 401.

[98]

J. Ranta, T. Aittokoski, M. Tenhunen, M. Alasaukko-Oja, Biomed. Phys. Eng. Expr. 2019, 5, 025016.

[99]

V. Vesterinen, N. Rinkinen, A. Nummela, Med. Internet. Res. 2020, 5, 16620.

[100]

M. K. Lupton, G. A. Robinson, R. J. Adam, S. Rose, G. J. Byrne, O. Salvado, N. A. Pachana, O. P. Almeida, K. McAloney, S. D. Gordon, P. Raniga, A. Fazlollahi, Y. Xia, A. Ceslis, S. Sonkusare, Q. Zhang, M. Kholghi, M. Karunanithi, P. E. Mosley, J. Lv, L. Borne, J. Adsett, N. Garden, J. Fripp, N. G. Martin, C. C. Guo, M. Breakspear, NeuroImage-Clin 2021, 29, 102527.

[101]

X. Ma, Y. Qi, Y. Niu, Q. Zhang, X. Xiang, K. Zhang, P. He, Y. Dai, W. Niu, X. Zhang, Nano Energy 2023, 111, 108424.

[102]

F. d'Astous, F. J. Foster, Ultrasound. Med. Biol. 1986, 12, 795.

[103]

E. Meng, R. J. L. o. a. C. Sheybani, Lab Chip 2014, 14, 3233.

[104]

W. J. M. S. Mokwa, Meas. Sci. Technol. 2007, 18, 47.

[105]

D. C. Rodger, A. Fong, W. Li, H. Ameri, A. Ahuja, C. Gutierrez, I. Lavrov, H. Zhong, P. Menon, E. Meng, Sensor. Actuat. B-Chem. 2008, 132, 449.

[106]

M. Deterre, E. Lefeuvre, Y. Zhu, M. Woytasik, B. Boutaud, R. D. Molin, J. Microelectromech. S. 2013, 23, 651.

[107]

H.-K. Wu, Y. S. Ko, Y. S. Lin, T. H. Tsai, H. H. Chang, Complement. Ther. Med. 2017, 35, 145.

[108]

W. Zuo, P. Wang, D. Zhang, IEEE J. Biomed. Health 2014, 20, 119.

[109]

A. Covic, D. J. H. Siriopol, Hypertension 2015, 65, 289.

[110]

J. Shi, M. Wagih, Engineering Proceedings 2022, 8, 1308.

[111]

H. Dsouza, B. M. Dávila-Montero, I. G. Afanador, G. M. Torres, Y. Cao, R. Mejia-Alvarez, N. Sepúlveda, Sci. Rep-Uk 2023, 13, 8975.

[112]

N. Wu, X. Cheng, Q. Zhong, J. Zhong, W. Li, B. Wang, B. Hu, J. Zhou, Adv. Funct. Mater. 2015, 25, 4788.

[113]

S. Chen, N. Wu, S. Lin, F. Yuan, Z. Xu, W. Li, B. Wang, J. Zhou, Acs Appl. Mater. Inter. 2018, 10, 3660.

[114]

B. Wang, et al., Adv. Electron. Mater. 2016, 2, 1500408.

[115]

G.-T. Hwang, Y. Kim, J. H. Lee, S. Oh, C. K. Jeong, D. Y. Park, J. Ryu, H. Kwon, S. G. Lee, B. Joung, D. Kim, K. J. Lee, Energ. Environ. Sci. 2015, 8, 2677.

[116]

X. Wan, et al., Adv. Funct. Mater. 2022, 32, 2200589.

[117]

J.-W. Tsai, J.-J. Wang, Y.-C. Su, Sensor. Actuat. A-Phys. 2014, 215, 176.

[118]

J. M. Connors, D. L. Longo, New Engl. J. Med. 2017, 377, 1177.

[119]

E. Vazquez-Garza, C. Jerjes-Sanchez, A. Navarrete, J. Joya-Harrison, D. Rodriguez, J. Thromb. Thrombolys. 2017, 44, 377.

[120]

M. Özkan, et al., J. Am. Coll. Cardiol. 2022, 79, 977.

[121]

E. Renner, G. D. Barnes, J. Am. Coll. Cardiol. 2020, 76, 2142.

[122]

H. Zhao, H. Hong, L. Sun, Y. Li, X. Zhu, N. IEEE T. Instrum. Meas. 2017, 66, 1780.

[123]

T. Jiang, et al., Biosens. Bioelectron. 2020, 163, 112288.

[124]

J. Zhong, Y. Ma, Y. Song, Q. Zhong, Y. Chu, I. Karakurt, D. B. Bogy, L. Lin, Acs Nano 2019, 13, 7107.

RIGHTS & PERMISSIONS

2025 The Author(s). FlexMat published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Posts & Telecommunications.

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/