n-type carbon nanotube inks for high-yield printing of ultrabroadband soft photo-imager thin sheets

Leo Takai , Yuya Kinoshita , Norika Takahashi , Minami Yamamoto , Daiki Shikichi , Noa Izumi , Yuto Matsuzaki , Yukito Kon , Naoko Hagiwara , Yukio Kawano , Kou Li

FlexMat ›› 2025, Vol. 2 ›› Issue (1) : 115 -125.

PDF
FlexMat ›› 2025, Vol. 2 ›› Issue (1) : 115 -125. DOI: 10.1002/flm2.41
ARTICLE

n-type carbon nanotube inks for high-yield printing of ultrabroadband soft photo-imager thin sheets

Author information +
History +
PDF

Abstract

Photo-thermoelectric (PTE) conversion with soft carbon nanotube (CNT) thin-films potentially facilitates non-destructive inspections as image sensor devices through ultrabroadband optical monitoring and freely attachable 3D omni-directional views. Toward real-time and large-area measurements, printing fabrication methods are effective for multi-pixel integrations of all-solution-processable CNT film PTE sensors. However, the conventional printing method of CNT PTE sensors yields fatally low-efficient in fabricating each pixel due to insufficient diffusion of n-type liquid dopants on the pristine p-type film channels. Herein, this work demonstrates high-yield fabrications of pn-junction type PTE sensors by employing p-/n-type CNT inks. For such conceptualization, the presenting strategy first develops all-solution-processable n-type CNT inks. Specifically, this work fabricates the n-type inks by simply mixing the pristine p-type CNT source solution and chemical liquid agents (hydroxide and crown-ether) at high-yield via ultrasonic vibration. The presenting CNT solution functions stability as n-type materials on various supporting substrates by several fabrication methods in the counterpart junction with pristine p-type film channels. Available fabrication methods and formable substrates are as follows: printing (screen, air-jet dispense), coating (spin, casting), and manual application on papers, polymer sheets (parylene, polyimide, polyurethane, and polyethylene terephthalate), glass, and semiconductor wafers. Furthermore, the all-solution-processable pn-junction CNT film PTE sensor fabricated by printing of p-/n-type inks sufficiently satisfies superior inherent optical properties. Following these, the presenting uniform high-yield pn-junction fabrication, 100 % forming at an error ratio of response signal intensities within 8.54 %, potentially facilitates large-scale integrations of ultrabroadband deformable thin-film PTE sensor sheets and the associated functional non-destructive inspections.

Keywords

all-solution-processable electronics / carbon nanotubes / device printing techniques / non-destrutive inspections / photo-imaging sensor devices / photo-thermoelectric effect / thin-film electronics

Cite this article

Download citation ▾
Leo Takai, Yuya Kinoshita, Norika Takahashi, Minami Yamamoto, Daiki Shikichi, Noa Izumi, Yuto Matsuzaki, Yukito Kon, Naoko Hagiwara, Yukio Kawano, Kou Li. n-type carbon nanotube inks for high-yield printing of ultrabroadband soft photo-imager thin sheets. FlexMat, 2025, 2(1): 115-125 DOI:10.1002/flm2.41

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. A. Abou-Khousa, M. S. U. Rahman, K. M. Donnel, M. T. A. Qaseer, IEEE Trans. Instrum. Meas. 2023, 72, 8000918.

[2]

C. Guo, W. Xu, M. Cai, S. Duan, J. Fu, X. Zhang, IEEE Access 2022, 10, 121547.

[3]

G. Dua, V. Arora, R. Mulaveesala, IEEE Sens. J. 2021, 21, 6.

[4]

A. Hernández, Y. Kudriavtsev, C. Salinas-Fuentes, C. Hernández-Gutierrez, R. Asomoza, Vacuum 2020, 171, 108976.

[5]

M. Nakatani, S. Fukamachi, P. Solís-Fernández, S. Honda, K. Kawahara, Y. Tsuji, Y. Sumiya, M. Kuroki, K. Li, Q. Liu, Y. C. Lin, A. Uchida, S. Oyama, H. G. Ji, K. okada, K. Suenaga, Y. Kawano, K. Yoshizawa, A. Yasui, H. Ago, Nat. Electron. 2024, 7, 119.

[6]

T. Moradi, A. Hatef, J. Appl. Phys. 2020, 127, 243105.

[7]

P. V. K. Yadav, I. Yadav, B. Ajitha, A. Rajasekar, S. Gupta, Y. A. K. Reddy, Sens. Actuator A-Phys. 2022, 342, 113611.

[8]

Y. Li, K. Tantiwanichapan, A. Swan, R. Paiella, Nanophotonics 2020, 9, 7.

[9]

C. Wang, X. Zhang, W. Hu, Chem. Soc. Rev. 2020, 49, 653.

[10]

T. Araki, K. Li, D. Suzuki, T. Abe, R. Kawabata, T. Uemura, S. Izumi, S. Tsuruta, N. Terasaki, Y. Kawano, T. Sekitani, Adv. Mater. 2024, 36, 2304048.

[11]

K. Li, Y. Kinoshita, D. Sakai, Y. Kawano, Micromachines 2023, 14, 1.

[12]

X. Lu, L. Sun, P. Jiang, X. Bao, Adv. Mater. 2019, 31, 1902044.

[13]

K. Li, D. Suzuki, Y. Kawano, Adv. Photon. Res. 2021, 2, 2000095.

[14]

K. Li, T. Araki, R. Utaki, Y. Tokumoto, M. Sun, S. Yasui, N. Kurihira, Y. Kasai, D. Suzuki, R. Marteijn, J. M. P. D. Toonder, T. Sekitani, Y. Kawano, Sci. Adv. 2022, 8, eabm4349.

[15]

Y. Oike, IEEE Trans. Electron Devices 2022, 69, 6.

[16]

L. Lavagna, R. Nisticò, S. Musso, M. Pavese, Mater. Today Chem. 2021, 20, 100477.

[17]

K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 2004, 306, 5700.

[18]

Y. Nonoguchi, M. Nakano, T. Murayama, H. Hagino, S. Hama, K. Miyazaki, R. Matsubara, M. Nakamura, T. Kawai, Adv. Funct. Mater. 2016, 26, 3021.

[19]

L. Brownlie, J. Shapter, Carbon 2018, 126, 257.

[20]

R. Kawabata, K. Li, T. Araki, M. Akiyama, K. Sugimachi, N. Matsuoka, N. Takahashi, D. Sakai, Y. Matsuzaki, R. Koshimizu, M. Yamamoto, L. Takai, R. Odawara, T. Abe, S. Izumi, N. Kurihira, T. Uemura, Y. Kawano, T. Sekitani, Adv. Mater. 2024, 36, 2309864.

[21]

S. Park, M. Vosguerichian, Z. Bao, Nanoscale 2013, 5, 1727.

[22]

K. Li, R. Yuasa, R. Utaki, M. Sun, Y. Tokumoto, D. Suzuki, Y. Kawano, Nat. Commun. 2021, 12, 3009.

[23]

X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R. H. Hauge, F. Léonard, J. Kono, Nano Lett. 2014, 14, 7.

[24]

K. Li, Y. Matsuzaki, S. Takahara, D. Sakai, Y. Aoshima, N. Takahashi, M. Yamamoto, Y. Kawano, Adv. Mater. Interfaces 2023, 10, 2300528.

[25]

K. Li, Y. Kinoshita, D. Shikichi, M. Kubota, N. Takahashi, Q. Zhang, R. Koshimizu, R. Tadenuma, M. Yamamoto, L. Takai, Z. Zhou, I. Sato, Y. Kawano, Adv. Opt. Mater. 2024, 12, 2302847.

[26]

Y. Nonoguchi, K. Kojiyama, T. Kawai, J. Mater. Chem. A 2018, 6, 21896.

[27]

A. H. Bond, M. L. Dietz, R. Chiarizia, Ind. Eng. Chem. Res. 2000, 39, 3442.

[28]

J. P. Llinas, M. A. Hekmaty, A. A. Talin, F. Léonard, ACS Appl. Nano Mater. 2020, 3, 2920.

[29]

T. Shen, K. Chang, C. Sun, W. Fang, J. Micromech. Microeng. 2019, 29, 025007.

[30]

W. Li, Z. Ni, J. Wang, X. Li, IEEE Trans. Electron Devices 2019, 66, 2230.

[31]

Z. Chen, S. Lin, L. Zhang, L. Wan, J. Mater. Chem. C 2024, 12, 15510.

[32]

S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhänen, ACS Nano 2013, 7, 11166.

[33]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. Kurt Gaskill, T. E. Murphy, H. Dennis Drew, M. S. Fuhrer, Nat. Nanotechnol. 2014, 9, 814.

[34]

A. Varpula, K. Tappura, J. Tiira, K. Grigoras, O. Kilpi, K. Sovanto, J. Ahopelto, M. Prunnila, APL Photon 2021, 6, 036111.

[35]

D. Y. Kim, K. K. O, Electron. Lett. 2017, 53, 732.

[36]

H. Ruizhi, J. Xiaoli, L. Yiming, P. Jingyu, W. Ke, X. Yue, Y. Feng, Opt. Express 2019, 27, 23250.

[37]

X. Yang, A. Vorobiev, A. Generalov, M. A. Andersson, J. Stake, Appl. Phys. Lett. 2017, 111, 021102.

[38]

A. K. Fard, G. Mckay, Y. Manawi, Z. Malaibari, M. A. Hussien, Chemosphere 2016, 164, 142.

[39]

D. Suzuki, Y. Takida, Y. Kawano, H. Minamide, N. Terasaki, Sci. Technol. Adv. Mater. 2022, 23, 424.

[40]

X. Gou, H. Xiao, S. Yang, Appl. Energy 2010, 87, 3131.

[41]

D. Suzuki, Y. Ochiai, Y. Nakagawa, Y. Kuwahara, T. Saito, Y. Kawano, ACS Appl. Nano Mater. 2018, 1, 2469.

[42]

R. Yamaguchi, T. Ishii, M. Matsumoto, A. Borah, N. Tanaka, K. Oda, M. Tomita, T. Watanabe, T. Fujigaya, J. Mater. Chem. A 2021, 9, 12188.

[43]

C. Kröckel, M. R. Preciado-Rivas, V. A. Torres-Sánchez, D. J. Mowbray, S. Reich, F. Hauke, J. C. Chacón-Torres, A. Hirsch, J. Am. Chem. Soc. 2020, 142, 2327.

[44]

X. Tang, K. Wu, X. Qi, H. J. Kwon, R. Wang, Z. Li, H. Ye, J. Hong, H. H. Choi, H. Kong, N. S. Lee, S. Lim, Y. J. Jeong, S. H. Kim, ACS Appl. Nano Mater. 2022, 5, 4801.

[45]

M. N. Tousignant, M. Ourabi, J. Niskanen, B. Mirka, W. J. Bodnaryk, A. Adronov, B. H. Lessard, Flex. Print. Electron 2022, 7, 034004.

[46]

K. T. Park, Y. S. Cho, I. Jeong, D. Jang, H. Cho, Y. Choi, T. Lee, Y. Ko, J. Choi, S. Y. Hong, M. W. Oh, S. Chung, C. R. Park, H. Kim, Adv. Energy Mater. 2022, 12, 2200256.

[47]

S. Horike, T. Fukushima, T. Saito, T. Kuchimura, Y. Koshiba, M. Morimoto, K. Ishida, Mol. Syst. Des. Eng. 2017, 2, 616.

[48]

C. K. Mytafides, W. J. Wright, R. Gustinvil, L. Tzounis, G. Karalis, A. S. Paipetis, E. Celik, Energy Adv. 2024, 3, 1642.

RIGHTS & PERMISSIONS

2025 The Author(s). FlexMat published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Posts & Telecommunications.

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/