Morphological engineering for high-performance perovskite field-effect transistors

Shuanglong Wang , Hong Lian , Yongge Yang , Zehua Wu , Yi Li , Haifeng Ling , Wojciech Pisula , Tomasz Marszalek , Tao Xu

FlexMat ›› 2025, Vol. 2 ›› Issue (1) : 82 -106.

PDF
FlexMat ›› 2025, Vol. 2 ›› Issue (1) : 82 -106. DOI: 10.1002/flm2.39
REVIEW

Morphological engineering for high-performance perovskite field-effect transistors

Author information +
History +
PDF

Abstract

The emergence of perovskite semiconductors for field-effect transistor (FET) applications has received significant research attention due to their excellent electronic properties. The rapid development of perovskite FETs over the last few years has been driven by advances in understanding the thin-film morphologies of perovskite layers and their intriguing correlations with charge carrier transport, device performance, and stability. Here we summarize the progress in morphological engineering aimed at improving the electrical parameters of perovskite FETs. We first discuss the mechanisms of crystal nucleation and growth in solution-processed polycrystalline perovskite thin films, along with their morphological characteristics, including grain boundaries, defects, ionic and charge transport properties. We then elaborate on the impacts of these microstructures on the performance of perovskite FET devices. Representative optimization strategies are also presented, showcasing how fundamental understandings have been translated into state-of-the-art perovskite FETs. Finally, we provide a perspective on the remaining challenges and future directions of optimizing perovskite morphologies, toward an in-depth understanding of the relationships between film morphology, electrical property and device performance for the next advances in transistor.

Keywords

charge carrier transport / field-effect transistors / ion migration / metal halide perovskite / morphological engineering

Cite this article

Download citation ▾
Shuanglong Wang, Hong Lian, Yongge Yang, Zehua Wu, Yi Li, Haifeng Ling, Wojciech Pisula, Tomasz Marszalek, Tao Xu. Morphological engineering for high-performance perovskite field-effect transistors. FlexMat, 2025, 2(1): 82-106 DOI:10.1002/flm2.39

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. S. Jung, N. G. Park, Small 2015, 11, 10.

[2]

X. Cheng, Z. Dou, H. Lian, Z. Qin, H. Guo, X. Li, Q. Dong, FlexMat 2024, 1, 127.

[3]

S. Zhang, Z. Li, Z. Fang, B. Qiu, J. L. Pathak, K. Sharafudeen, Y. Li, G. Han, Mater. Horiz. 2023, 10, 3499.

[4]

B. Liu, J. Li, B. Cao, L. Zhang, Z. Liu, Chem. Phys. Mater 2023, 2, 323.

[5]

A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.

[6]

E. Lamanna, F. Matteocci, E. Calabrò, L. Serenelli, E. Salza, L. Martini, A. Di Carlo, Joule 2020, 4, 865.

[7]

D. Yang, B. Zhao, T. Yang, R. Lai, D. Lan, R. H. Friend, D. Di, Adv. Funct. Mater. 2022, 32, 2109495.

[8]

W. Tian, H. Zhou, L. Li, Small 2017, 13, 1702107.

[9]

F. Zhou, Z. Li, W. Lan, Q. Wang, L. Ding, Z. Jin, Small Methods 2020, 4, 2000506.

[10]

H. Li, Q. Li, T. Sun, Y. Zhou, S. T. Han, Mater. Horiz. 2024.

[11]

H. Sirringhaus, M. Bird, N. Zhao, Adv. Mater. 2010, 22, 3893.

[12]

G. Abiram, M. Thanihaichelvan, P. Ravirajan, D. Velauthapillai, Nanomaterials 2022, 12, 2396.

[13]

C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, Science 1999, 286, 945.

[14]

V. Bruevich, L. Kasaei, S. Rangan, H. Hijazi, Z. Zhang, T. Emge, V. Podzorov, R. A. Bartynski, L. C. Feldman, Adv. Mater. 2022, 34, 2205055.

[15]

X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, C. Soci, Nat. Commun. 2015, 6, 7383.

[16]

T. Matsushima, M. R. Leyden, T. Fujihara, C. Qin, A. S. Sandanayaka, C. Adachi, Appl. Phys. Lett. 2019, 115.

[17]

H. Zhu, W. Yang, Y. Reo, G. Zheng, S. Bai, A. Liu, Y. Y. Noh, Nat. Electron. 2023, 6, 650.

[18]

L. K. Ono, S. Liu, Y. Qi, Angew. Chem. - Int. Ed. 2020, 59, 6676.

[19]

F. Wang, S. Bai, W. Tress, A. Hagfeldt, F. Gao, npj Flex. Electron. 2018, 2, 22.

[20]

C. Liu, Z. Huang, X. Hu, X. Meng, L. Huang, J. Xiong, Y. Chen, ACS Appl. Mater. Interfaces. 2018, 10, 1909.

[21]

S. G. Motti, D. Meggiolaro, S. Martani, R. Sorrentino, A. J. Barker, F. De Angelis, A. Petrozza, Adv. Mater. 2019, 31, 1901183.

[22]

D. Y. Son, J. W. Lee, Y. J. Choi, I. H. Jang, S. Lee, P. J. Yoo, N. G. Park, Nat. Energy 2016, 1, 1.

[23]

Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, J. Huang, Energy Environ. Sci. 2016, 9, 1752.

[24]

A. F. Castro-Méndez, J. Hidalgo, J. P. Correa-Baena, Adv. Energy Mater. 2019, 9, 1901489.

[25]

F. Paulus, C. Tyznik, O. D. Jurchescu, Y. Vaynzof, Adv. Funct. Mater. 2021, 31, 2101029.

[26]

Z. Fan, K. Sun, J. Wang, J. Mater. Chem. A 2015, 3, 18809.

[27]

Y. Fu, M. P. Hautzinger, Z. Luo, F. Wang, D. Pan, M. M. Aristov, S. Jin, ACS Cent. Sci. 2019, 5, 1377.

[28]

C. Eames, J. M. Frost, P. R. Barnes, B. C. O’regan, A. Walsh, M. S. Islam, Nat. Commun. 2015, 6, 7497.

[29]

J. Qian, B. Xu, W. Tian, Org. Electron. 2016, 37, 61.

[30]

M. Liang, W. Lin, Z. Lan, J. Meng, Q. Zhao, X. Zou, K. Zheng, T. Pullerits, S. E. Canton, ACS Appl. Electron. Mater. 2020, 2, 1402.

[31]

Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng, Z. Liang, Adv. Mater. 2018, 30, 1703487.

[32]

Y. Zheng, T. Niu, X. Ran, J. Qiu, B. Li, Y. Xia, W. Huang, J. Mater. Chem. A 2019, 7, 13860.

[33]

W. Guo, Z. Yang, J. Dang, M. Wang, Nano Energy 2021, 86, 106129.

[34]

I. Spanopoulos, I. Hadar, W. Ke, Q. Tu, M. Chen, H. Tsai, M. G. Kanatzidis, G. Shekhawat, V. P. Dravid, M. R. Wasielewski, A. D. Mohite, C. C. Stoumpos, J. Am. Chem. Soc. 2019, 141, 5518.

[35]

W. Fu, H. Liu, X. Shi, L. Zuo, X. Li, A. K. Y. Jen, Adv. Funct. Mater. 2019, 29, 1900221.

[36]

N. Zhou, H. Zhou, Small Struct. 2022, 3, 2100232.

[37]

H. Lai, Z. Xu, Z. Shao, B. Cui, B. Tian, H. Wang, Q. Fu, Solar RRL 2023, 7, 2300132.

[38]

J. Thiesbrummel, S. Shah, E. Gutierrez-Partida, F. Zu, F. Peña-Camargo, S. Zeiske, M. Stolterfoht, Nat. Energy 2024, 1.

[39]

O. Almora, D. Miravet, I. Gelmetti, G. Garcia-Belmonte, Phys. Status Solidi - Rapid Res. Lett. 2022, 16, 2200336.

[40]

Y. Yuan, J. Huang, Acc. Chem. Res. 2016, 49, 286.

[41]

J. W. Lee, S. G. Kim, J. M. Yang, Y. Yang, N. G. Park, APL Mat. 2019, 7.

[42]

E. Bi, Z. Song, C. Li, Z. Wu, Y. Yan, Trends Chem. 2021, 3, 575.

[43]

D. Yang, W. Ming, H. Shi, L. Zhang, M. H. Du, Chem. Mater. 2016, 28, 4349.

[44]

D. Moia, J. Maier, Mater. Horiz. 2023, 10, 1641.

[45]

H. Choi, K. Choi, Y. Choi, T. Kim, S. Lim, T. Park, Small Methods 2020, 4, 1900569.

[46]

H. Li, J. Zhou, L. Tan, M. Li, C. Jiang, S. Wang, C. Yi, Y. Liu, Y. Zhang, Y. Ye, W. Tress, Sci. Adv. 2022, 8, eabo7422.

[47]

G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, H. J. Snaith, Adv. Funct. Mater. 2014, 24, 151.

[48]

X. Cao, L. Zhi, Y. Jia, Y. Li, K. Zhao, X. Cui, J. Wei, ACS Appl. Mater. Interfaces. 2019, 11, 7639.

[49]

Y. Yan, Y. Yang, M. Liang, M. Abdellah, T. Pullerits, K. Zheng, Z. Liang, Nat. Commun. 2021, 12, 6603.

[50]

S. Bhaumik, M. R. Kar, B. N. Thorat, A. Bruno, S. G. Mhaisalkar, Chem. Plus. Chem. 2021, 86, 558.

[51]

B. Li, J. Shi, J. Lu, W. L. Tan, W. Yin, J. Sun, J. J. Jasieniak, R. T. Jones, P. Pigram, C. R. McNeill, Y. B. Cheng, ACS Appl. Energy Mater. 2020, 3, 3358.

[52]

A. A. Petrov, A. A. Ordinartsev, S. A. Fateev, E. A. Goodilin, A. B. Tarasov, Molecules 2021, 26, 7541.

[53]

J. Sun, F. Li, J. Yuan, W. Ma, Small Methods 2021, 5, 2100046.

[54]

N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897.

[55]

J. Li, R. Yang, L. Que, Y. Wang, F. Wang, J. Wu, S. Li, J. Mater. Res. 2019, 34, 2416.

[56]

Y. Gou, S. Tang, C. Yun, P. Zhao, J. Chen, H. Yu, Mater. Horiz. 2024.

[57]

S. Ghosh, S. Mishra, T. Singh, Adv. Mater. Interfaces 2020, 7, 2000950.

[58]

Bernard Vinet, L. Magnusson, H. Fredriksson, P. J. Desré, J. Colloid Interface Sci. 2002, 255, 363.

[59]

H. Dong, C. Ran, W. Gao, N. Sun, X. Liu, Y. Xia, W. Huang, Adv. Energy Mater. 2022, 12, 2102213.

[60]

M. Jung, S. G. Ji, G. Kim, S. I. Seok, Chem. Soc. Rev. 2019, 48, 2011.

[61]

S. Hebié, Y. Holade, K. Servat, B. K. Kokoh, T. W. Napporn, Catalytic Application of Nano-Gold Catalysts 2016, 101.

[62]

H. Hu, M. Singh, X. Wan, J. Tang, C. W. Chu, G. Li, J. Mater. Chem. A 2020, 8, 1578.

[63]

D. H. StJohn, M. Qian, M. A. Easton, P. Cao, Acta Mater. 2011, 59, 4907.

[64]

N. T. Thanh, N. Maclean, S. Mahiddine, Chem. Rev. 2014, 114, 7610.

[65]

V. M. Burlakov, Y. Hassan, M. Danaie, H. J. Snaith, A. Goriely, J. Phys. Chem. Lett. 2020, 11, 6535.

[66]

K. Liu, B. Ouyang, X. Guo, Y. Guo, Y. Liu, npj Flex. Electron. 2022, 6, 1.

[67]

B. Kumar, B. K. Kaushik, Y. S. Negi, Polym. Rev. 2014, 54, 33.

[68]

Q. Zhang, Y. Zhang, Y. Luo, H. Yin, Natl. Sci. Rev. 2024, 11, nwae008.

[69]

M. H. Yang, Q. Yu, B. Xiao, X. F. Xie, P. F. Yang, Semicond. Sci. Technol. 1999, 14, 715.

[70]

X. Guo, Y. Xu, S. Ogier, T. N. Ng, M. Caironi, A. Perinot, F. Yan, J. Zhao, W. Tang, R. A. Sporea, A. Nejim, J. Carrabina, P. Cain, IEEE Trans. Electron Devices 2017, 64, 1906.

[71]

S. Bhattacharjee, K. L. Ganapathi, D. G. Sharma, A. Sharma, S. Mohan, N. Bhat, IEEE Trans. Nanotech. 2019, 18, 1071.

[72]

S. Wieghold, J. P. Correa-Baena, L. Nienhaus, S. Sun, K. E. Shulenberger, Z. Liu, T. Buonassisi, S. S. Shin, M. G. Bawendi, ACS Appl. Energy Mater. 2018, 1, 6801.

[73]

S. Wang, S. Kalyanasundaram, L. Gao, Z. Ling, Z. Zhou, M. Bonn, T. Marszalek, H. I. Wang, W. Pisula, Mater. Horiz. 2024, 11, 1177.

[74]

Z. Li, S. P. Senanayak, L. Dai, G. Kusch, R. Shivanna, Y. Zhang, R. L. Hoye, J. Ye, Y. Huang, H. Sirringhaus, R. A. Oliver, N. C. Greenham, R. H. Friend, Adv. Funct. Mater. 2021, 31, 2104981.

[75]

S. P. Senanayak, B. Yang, T. H. Thomas, N. Giesbrecht, W. Huang, E. Gann, H. Sirringhaus, K. Goedel, S. Guha, X. Moya, C. R. McNeill, P. Docampo, A. Sadhanala, R. H. Friend, Sci. Adv. 2017, 3, e1601935.

[76]

G. L. Sewell, Phys. Rev. 1963, 129, 597.

[77]

S. Tan, J. Shi, B. Yu, W. Zhao, Y. Li, Y. Li, Q. Meng, Y. Luo, Q. Meng, Adv. Funct. Mater. 2021, 31, 2010813.

[78]

D. Koo, Y. Cho, U. Kim, G. Jeong, J. Lee, J. Seo, H. Park, Adv. Energy Mater. 2020, 10, 2001920.

[79]

K. Kim, J. Han, S. Maruyama, M. Balaban, I. Jeon, Solar RRl 2021, 5, 2000783.

[80]

K. M. Boopathi, R. Mohan, T. Y. Huang, W. Budiawan, M. Y. Lin, C. H. Lee, C. W. Chu, J. Mater. Chem. A 2016, 4, 1591.

[81]

C. Chen, X. Wang, Z. Li, X. Du, Z. Shao, X. Sun, S. Pang, C. Gao, L. Hao, Q. Zhao, B. Zhang, G. Cui, Angew. Chem. - Int. Ed. 2022, 61, e202113932.

[82]

T. Wu, D. Cui, X. Liu, X. Luo, H. Su, H. Segawa, L. Han, Y. Wang, Solar RRl 2021, 5, 2100034.

[83]

Z. Li, X. Li, M. Wang, M. Cai, X. Shi, Y. Mo, S. Dai, D. Ren, M. Yang, X. Liu, R. Jia, N. V. Medhekar, ACS Appl. Energy Mater. 2021, 5, 108.

[84]

J. J. Cao, Y. H. Lou, K. L. Wang, Z. K. Wang, J. Mater. Chem. C 2022, 10, 7423.

[85]

M. Yin, H. Yao, H. Qiu, C. Wu, M. Zhang, F. Hao, Adv. Funct. Mater. 2024, 34, 2404792.

[86]

S. Wang, K. Bidinakis, C. Haese, F. H. Hasenburg, O. Yildiz, Z. Ling, T. Marszalek, M. Kivala, R. Graf, P. W. M. Blom, S. A. L. Weber, W. Pisula, Small 2023, 19, 2207426.

[87]

S. Jana, E. Carlos, S. Panigrahi, R. Martins, E. Fortunato, ACS Nano 2020, 14, 14790.

[88]

J. Pascual, G. Nasti, M. H. Aldamasy, J. A. Smith, M. Flatken, N. Phung, A. Abate, S. H. Turren-Cruz, M. Li, A. Dallmann, R. Avolio, Mater. Adv. 2020, 1, 1066.

[89]

Z. Zhang, Y. Huang, J. Jin, Y. Jiang, Y. Xu, J. Zhu, D. Zhao, Angew. Chem. 2023, 135, e202308093.

[90]

S. Tian, G. Li, R. C. Turnell-Ritson, Z. Fei, A. Bornet, M. K. Nazeeruddin, P. J. Dyson, Angew. Chem. - Int. Ed. 2024, 63, e202407193.

[91]

Z. Yang, X. Cao, G. Niu, Y. Wang, Y. Dong, S. Cao, J. Wang, X. Wang, Y. Liu, Chem. Eng. J. 2023, 464, 142720.

[92]

S. Wang, S. Frisch, H. Zhang, O. Yildiz, M. Mandal, N. Ugur, T. Marszalek, C. Ramanan, D. Andrienko, H. I. Wang, M. Bonn, P. W. M. Blom, M. Kivala, W. Pisula, Mater. Horiz. 2022, 9, 2633.

[93]

W. Yang, G. Park, A. Liu, H. B. Lee, J. W. Kang, H. Zhu, Y. Y. Noh, Adv. Funct. Mater. 2023, 33, 2303309.

[94]

Z. Zhang, Y. Huang, C. Wang, Y. Jiang, J. Jin, J. Xu, Z. Li, Z. Su, Q. Zhou, J. Zhu, R. He, D. Zhao, Energy Environ. Sci. 2023, 16, 3430.

[95]

S. Wang, M. Mandal, H. Zhang, D. W. Breiby, O. Yildiz, Z. Ling, G. Floudas, M. Bonn, D. Andrienko, H. I. Wang, P. W. Blom, T. Marszalek, J. Am. Chem. Soc. 2024, 146, 19128.

[96]

J. Feng, B. Xiao, J. Phys. Chem. A C 2014, 118, 19655.

[97]

T. T. Trinh, K. Ryu, K. Jang, W. Lee, S. Baek, J. Raja, J. Yi, Semicond. Sci. Technol. 2011, 26, 085012.

[98]

Y. Liang, J. Kyungsoo, S. Velumani, P. T. N. Cam, Y. Junsin, J. Semicond. 2015, 36, 024007.

[99]

F. Fang, W. Chen, Y. Li, H. Liu, M. Mei, R. Zhang, J. Hao, M. Mikita, W. Cao, R. Pan, K. Wang, X. W. Sun, Adv. Funct. Mater. 2018, 28, 1706000.

[100]

Y. Li, L. Zhi, G. Ge, Z. Zhao, X. Cao, F. Chen, X. Cui, F. Lin, L. Ci, J. Sun, D. Zhuang, Cryst. Growth Des. 2018, 19, 959.

[101]

W. Xiang, J. Zhang, S. F. Liu, S. Albrecht, A. Hagfeldt, Z. Wang, Joule 2022, 6, 315.

[102]

H. Zhu, A. Liu, K. I. Shim, J. Hong, J. W. Han, Y. Y. Noh, Adv. Mater. 2020, 32, 2002717.

[103]

H. Zhu, A. Liu, H. Kim, J. Hong, J. Y. Go, Y. Y. Noh, Chem. Mater. 2020, 33, 1174.

[104]

F. Zhang, M. Shao, C. Wang, W. Wen, W. Shi, M. Qin, H. Huang, X. Wei, Y. Guo, Y. Liu, Adv. Mater. 2024, 36, 2307326.

[105]

J. Kim, Y. S. Shiah, K. Sim, S. Iimura, K. Abe, M. Tsuji, M. Sasase, H. Hosono, Adv. Sci. 2022, 9, 2104993.

[106]

N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476.

[107]

T. Matsui, T. Yamamoto, T. Nishihara, R. Morisawa, T. Yokoyama, T. Sekiguchi, T. Negami, Adv. Mater. 2019, 31, 1806823.

[108]

T. Ozturk, E. Akman, A. E. Shalan, S. Akin, Nano Energy 2021, 87, 106157.

[109]

X. Yang, Y. Liu, S. Yang, Y. Wu, Y. Lei, Y. Yang, A. Liu, J. Chu, W. Li, Adv. Funct. Mater. 2024, 34, 2403917.

[110]

G. Park, W. Yang, A. Liu, H. Zhu, F. De Angelis, Y. Y. Noh, Mater. Sci. Eng.: R: Rep. 2024, 159, 100806.

[111]

X. Wang, Y. Fan, L. Wang, C. Chen, Z. Li, R. Liu, H. Meng, Z. Shao, X. Du, H. Zhang, G. Cui, S. Pang, Chem 2020, 6, 1369.

[112]

Y. Reo, T. Choi, J. Y. Go, S. Jeon, B. Lim, H. Zhu, A. Liu, Y. Y. Noh, ACS Energy Lett. 2023, 8, 3088.

[113]

A. Liang, Y. Gao, R. Asadpour, Z. Wei, B. P. Finkenauer, L. Jin, J. Yang, K. Wang, K. Chen, P. Liao, C. Zhu, L. Dou, B. W. Boudouris, M. A. Alam, J. Am. Chem. Soc. 2021, 143, 15215.

[114]

L. Wang, G. Liu, X. Xi, G. Yang, L. Hu, B. Zhu, Y. He, Y. Liu, H. Qian, S. Zhang, H. Zai, Crystals 2022, 12, 894.

[115]

Y. Yang, S. Feng, X. Li, M. Qin, L. Li, X. Yang, R. Tai, Adv. Sci. 2024, 11, 2403778.

[116]

P. Zhao, B. J. Kim, H. S. Jung, Mater. Today Energy 2018, 7, 267.

[117]

F. Zhang, Y. Yang, Y. Gao, D. Wang, W. Dong, P. Lu, X. Wang, M. Lu, Y. Wu, P. Chen, J. Hu, X. Yang, D. Zhou, D. Liu, L. Xu, B. Dong, Z. Wu, Y. Zhang, H. Song, X. Bai, Nano Lett. 2024, 24, 1268.

[118]

Zhang, X., Wang, L., Kong, L., Wang, S., Dai, J., Jia, G., & Yang, X. (2024). Moore and More, 1, 1-9.

[119]

C. Zhang, D. B. Kuang, W. Q. Wu, Small Methods 2020, 4, 1900662.

RIGHTS & PERMISSIONS

2025 The Author(s). FlexMat published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Posts & Telecommunications.

AI Summary AI Mindmap
PDF

0

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/