PDF
Abstract
Flexible sensing technologies are pivotal for achieving multidimensional spatial freedom in sensing capabilities. Within this domain, flexible acceleration sensors stand out as innovative devices capable of accurately monitoring acceleration signals, even amidst deformation scenarios such as bending, compression, or stretching. These sensors are increasingly recognized for their transformative potential across various sectors, including health monitoring, industrial machinery, soft robotics, and so on. This review delves into the recent progress in the field of flexible acceleration sensors, examining their operational mechanisms, the materials used for the sensing layers, and their performance characteristics based on different operational principles. Moreover, we explore the diverse applications of these sensors in areas such as wearable devices, infrastructure surveillance, and automotive safety, providing a comprehensive overview of their current uses. Additionally, we assess the advantages and limitations of flexible acceleration sensors and propose potential directions for their advancement. Through this review, we aim to highlight the significant role that flexible acceleration sensors play in the ongoing evolution of sensing technologies, underscoring their importance in a wide array of applications.
Keywords
acceleration sensor
/
applications
/
flexible
/
wearable
Cite this article
Download citation ▾
Bozhi Wu, Ke Li, Lei Wang, Kuibo Yin, Meng Nie, Litao Sun.
Revolutionizing sensing technologies: A comprehensive review of flexible acceleration sensors.
FlexMat, 2025, 2(1): 55-81 DOI:10.1002/flm2.38
| [1] |
W. Babatain, S. Bhattacharjee, A. Hussain, M. Hussain, ACS Appl. Electron. Mater. 2021, 3, 504.
|
| [2] |
Y. Liao, H. Yang, Q. Liao, W. Si, Y. Chu, X. Chu, L. Qin, Coatings 2023, 13, 1252.
|
| [3] |
Z. Wang, Z. Yang, T. Dong, Sensors 2017, 17, 341.
|
| [4] |
M. Abdulkarem, K. Samsudin, F. Rokhani, M. Rasid, Struct. Health Monit. 2019, 19, 693.
|
| [5] |
X. Zhou, L. Che, J. Wu, X. Li, Y. Wang, J. Micromech. Microeng. 2012, 22, 085031.
|
| [6] |
R. Mayagoitia, A. Nene, P. Veltink, J. Biomechanics 2002, 35, 537.
|
| [7] |
S. Yin, Z. Huang, IEEE/ASME Trans. Mechatron. 2015, 20, 2613.
|
| [8] |
X. He, Y. Zi, H. Guo, H. Zheng, Y. Xi, C. Wu, J. Wang, W. Zhang, C. Lu, Z. L. Wang, Adv. Funct. Mater. 2016, 27, 1604378.
|
| [9] |
C. Xiang, C. Liu, C. Hao, Z. Wang, L. Che, X. Zhou, Nano Energy 2017, 31, 469.
|
| [10] |
B. Zhang, L. Zhang, W. Deng, L. Jin, F. Chun, H. Pan, B. Gu, H. Zhang, Z. Lv, W. Yang, Z. L. Wang, ACS Nano 2017, 11, 7440.
|
| [11] |
J. Zhu, X. Guo, D. Meng, M. Cho, I. Park, R. Huang, W. Song, J. Mater. Chem. A 2018, 6, 16548.
|
| [12] |
Y. Chen, Y. C. Wang, Y. Zhang, H. Zou, Z. Lin, G. Zhang, C. Zou, Z. L. Wang, Adv. Energy Mater. 2018, 8, 1802159.
|
| [13] |
B. Zhang, Z. Wu, Z. Lin, H. Guo, F. Chun, W. Yang, Z. L. Wang, Mater. Today 2021, 43, 37.
|
| [14] |
J. Ma, J. Zhu, P. Ma, Y. Jie, Z. L. Wang, X. Cao, ACS Energy Lett. 2020, 5, 3005.
|
| [15] |
S. M. S. Rana, M. A. Zahed, M. T. Rahman, M. Salauddin, S. H. Lee, C. Park, P. Maharjan, T. Bhatta, K. Shrestha, J. Y. Park, Adv. Funct. Mater. 2021, 31, 2105110.
|
| [16] |
C. Liu, L. Fang, H. Zou, Y. Wang, J. Chi, L. Che, X. Zhou, Z. Wang, T. Wang, L. Dong, G. Wang, Z. L. Wang, Extreme Mech. Lett. 2021, 42, 101021.
|
| [17] |
E. S. Nour, O. Nur, M. Willander, Semicond. Sci. Technol. 2017, 32, 064005.
|
| [18] |
M. S. Mahmood, Z. Celik-Butler, D. P. Butler, Sens. Actuators, A 2017, 263, 530.
|
| [19] |
M. Taj, G. N. V. R. Vikram, IEEE Sens. J. 2022, 22, 190.
|
| [20] |
Y. Yamamoto, S. Harada, D. Yamamoto, W. Honda, T. Arie, S. Akita, K. Takei, Sci. Adv. 2016, 2, e1601473.
|
| [21] |
X. Chen, Q. Zeng, J. Shao, S. Li, X. Li, H. Tian, G. Liu, B. Nie, Y. Luo, ACS Appl. Mater. Interfaces 2021, 13, 34637.
|
| [22] |
T. Huang, S. Yang, P. He, J. Sun, S. Zhang, D. Li, Y. Meng, J. Zhou, H. Tang, J. Liang, G. Ding, X. Xie, ACS Appl. Mater. Interfaces 2018, 10, 30732.
|
| [23] |
J. Park, M. Kim, Y. Lee, H. Lee, H. Ko, Sci. Adv. 2015, 1, e1500661.
|
| [24] |
Y. Zhang, Z. Li, K. Xu, C. Gao, Y. Hao, F. Meng, Y. Gui, in 2017 IEEE 30th Int. Conf. Micro Electro Mech. Syst. (MEMS), IEEE 2017, p. 1268.
|
| [25] |
L. Zhang, N. Zhang, Y. Yang, S. Xiang, C. Tao, S. Yang, X. Fan, ACS Appl. Mater. Interfaces 2018, 10, 30819.
|
| [26] |
X. Han, Q. Zhang, J. Yu, J. Song, Z. Li, H. Cui, J. He, X. Chou, J. Mu, Nanomaterials 2021, 11, 2763.
|
| [27] |
C. He, J. Tan, X. Jian, G. Zhong, L. Cheng, J. Lin, IEEE Internet Things J. 2022, 9, 14126.
|
| [28] |
S. Maharjan, V. K. Samoei, A. H. Jayatissa, Materials 2023, 16, 1586.
|
| [29] |
Y. Zhang, C. Lei, W. Soo Kim, Appl. Phys. Lett. 2013, 103, 073304.
|
| [30] |
I. E. Gonenli, Z. Celik-Butler, D. P. Butler, IEEE Sens. J. 2011, 11, 2318.
|
| [31] |
H. Yu, X. He, W. Ding, Y. Hu, D. Yang, S. Lu, C. Wu, H. Zou, R. Liu, C. Lu, Z. L. Wang, Adv. Energy Mater. 2017, 7, 1700565.
|
| [32] |
F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z. L. Wang, Nano Lett. 2012, 12, 3109.
|
| [33] |
H. M. A. Hamid, Z. Celik-Butler, IEEE Sens. J. 2021, 21, 12606.
|
| [34] |
G. Lee, W. Hwang, J. Park, M. Lee, Energies 2019, 12, 1381.
|
| [35] |
N. Sharma, M. Hooda, S. K. Sharma, J. Mater. 2014, 2014, 1.
|
| [36] |
P. French, Sens. Actuators, A 2002, 99, 3.
|
| [37] |
M. J. Cordill, J. Berger, T. Jörg, SID Symp. Dig. Tech. Pap. 2016, 47, 415.
|
| [38] |
C. Kim, C. H. Kim, Micromachines 2018, 9, 492.
|
| [39] |
R. Schwaiger, O. Kraft, Acta Mater. 2003, 51, 195.
|
| [40] |
T. Vo, K. Kim, Adv. Intell. Syst. 2024, 6, 2300730.
|
| [41] |
F. Fan, Z. Tian, Z. Wang, Nano Energy 2012, 1, 328.
|
| [42] |
Q. Miao, C. Liu, N. Zhang, K. Lu, H. Gu, J. Jiao, J. Zhang, Z. Wang, X. Zhou, ACS Appl. Electron. Mater. 2020, 2, 3072.
|
| [43] |
H. Zhang, Y. Yang, Y. Su, J. Chen, K. Adams, S. Lee, C. Hu, Z. L. Wang, Adv. Funct. Mater. 2013, 24, 1401.
|
| [44] |
Y. Qi, Y. Kuang, Y. Liu, G. Liu, J. Zeng, J. Zhao, L. Wang, M. Zhu, C. Zhang, Appl. Energy 2022, 327, 120092.
|
| [45] |
C. Liu, Y. Wang, N. Zhang, X. Yang, Z. Wang, L. Zhao, W. Yang, L. Dong, L. Che, G. Wang, X. Zhou, Nano Energy 2020, 67, 104228.
|
| [46] |
J. Zhu, X. Hou, X. Niu, X. Guo, J. Zhang, J. He, T. Guo, X. Chou, C. Xue, W. Zhang, Sens. Actuators, A 2017, 263, 317.
|
| [47] |
Z. Wang, F. Zhang, N. Li, T. Yao, D. Lv, G. Cao, Adv. Mater. Technol. 2020, 5, 2000159.
|
| [48] |
K. Dai, X. Wang, F. Yi, C. Jiang, R. Li, Z. You, Nano Energy 2018, 45, 84.
|
| [49] |
H. Yu, Z. Xi, Y. Zhang, R. Xu, C. Zhao, Y. Wang, X. Guo, Y. Huang, J. Mi, Y. Lin, T. Du, M. Xu, Nano Energy 2023, 107, 108182.
|
| [50] |
Y. Qiao, W. Chang, A. Cheng, J. Wang, H. Zhang, Z. Sha, S. He, J. Zhang, S. Peng, C. Wang, Nano Energy 2023, 118, 109021.
|
| [51] |
T. Bhatta, O. Faruk, M. Islam, H. Kim, S. Rana, G. Pradhan, A. Deo, D. Kwon, I. Yoo, J. Park, Nano Energy 2024, 127, 109793.
|
| [52] |
K. Wang, Y. Yao, Y. Liu, X. Guan, Y. Yu, J. Wang, Y. Wang, T. Li, T. Cheng, Nano Energy 2024, 129, 110012.
|
| [53] |
Y. Li, Q. Li, X. Ma, X. Li, Y. Guo, Nano Energy 2025, 133, 110437.
|
| [54] |
D. Won, S. Baek, M. Huh, H. Kim, S. Lee, J. Kim, Sens. Actuators, A 2017, 259, 105.
|
| [55] |
Y. Chen, Z. Liu, D. Zhu, S. Handschuh-Wang, S. Liang, J. Yang, T. Kong, X. Zhou, Y. Liu, X. Zhou, Mater. Horiz. 2017, 4, 591.
|
| [56] |
S. Chen, C. Xue, W. Zhang, J. Xiong, B. Zhang, J. Hu, Nano/Micro Eng. Mol. Syst. 2008, 1, 6.
|
| [57] |
H. Farahani, J. K. Mills, W. L. Cleghorn, Microsyst. Technol. 2009, 15, 1815.
|
| [58] |
A. Mahmood, D. P. Butler, Z. Çelik-Butler, Sens. Actuators, A 2006, 132, 452.
|
| [59] |
S. A. Dayeh, D. P. Butler, Z. Çelik-Butler, Sens. Actuators, A 2005, 118, 49.
|
| [60] |
H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, P. Renaud, Sens. Actuators, A 1998, 64, 33.
|
| [61] |
L. Qian, D. Li, J. Sens. 2014, 2014, 1.
|
| [62] |
R. Bailey, J. Magn. Magn. Mater. 1983, 39, 178.
|
| [63] |
V. Iusan, A. Stanci, IEEE Trans. Magn. 1994, 30, 1104.
|
| [64] |
M. Piso, J. Magn. Magn. Mater. 1999, 201, 380.
|
| [65] |
K. Raj, R. Moskowitz, J. Magn. Magn. Mater. 1990, 85, 233.
|
| [66] |
Z. Wu, J. Ai, J. Huang, Z. Du, B. Su, Nano Energy 2021, 85, 106016.
|
| [67] |
B. Ando, S. Baglio, V. Marletta, IEEE Trans. Instrum. Meas. 2021, 70, 1.
|
| [68] |
S. Baglio, P. Barrera, N. Savalli, in IMTC 2006 – Instrum. Meas. Technol. Conf., IEEE Sorrento, Italy 2006, p. 2368.
|
| [69] |
B. Ando, A. Ascia, S. Baglio, N. Pitrone, IEEE Instrum. Meas. Mag. 2006, 9, 44.
|
| [70] |
B. Andò, S. Baglio, A. Beninato, Sens. Actuators, A 2013, 202, 57.
|
| [71] |
B. Ando, A. Ascia, S. Baglio, IEEE Trans. Instrum. Meas. 2010, 59, 558.
|
| [72] |
B. Ando, A. Ascia, S. Baglio, A. Beninato, IEEE Trans. Instrum. Meas. 2010, 59, 1471.
|
| [73] |
R. Olaru, D. D. Dragoi, Sens. Actuators, A 2005, 120, 424.
|
| [74] |
A. Pristup, U.S. Patent 20070214889A1, 2007.
|
| [75] |
N. Popa, I. Sabata, I. Anton, I. Potencz, L. Vekas, J. Magn. Magn. Mater. 1999, 201, 385.
|
| [76] |
N. Nakajima, H. Matsuyama, U.S. Patent 4676103, 1987.
|
| [77] |
B. Andò, S. Baglio, A. Beninato, in 2011 IEEE Int. Instrum. Meas. Technol. Conf., IEEE, Hangzhou, China 2011, p. 1.
|
| [78] |
D. Simonenko, A. Suprun, Y. Romanov. U.S. Patent 007296469B2, 2007.
|
| [79] |
M. Zhu, Z. Yi, B. Yang, C. Lee, Nano Today 2021, 36, 101016.
|
| [80] |
H. Liu, C. Lee, T. Kobayashi, C. J. Tay, C. Quan, Sens. Actuators, A 2012, 186, 242.
|
| [81] |
G. Zhu, R. Yang, S. Wang, Z. L. Wang, Nano Lett. 2010, 10, 3151.
|
| [82] |
Q. Cheng, Z. Peng, J. Lin, in Proc. 10th IEEE Int. Conf. Nano/Micro Eng. Mol. Syst. (IEEE-NEMS 2015), IEEE, Xi’an, China 2015, pp. 409–412.
|
| [83] |
P. Pillatsch, E. M. Yeatman, A. S. Holmes, in 2013 IEEE Int. Conf. BodySensor Networks (BSN), IEEE, Cambridge, MA 2013, pp. 1–6.
|
| [84] |
J. Kymissis, C. Kendall, J. Paradiso, N. Gershenfeld, in Phys. Media Group MIT Media Lab. E15-410, IEEE, Cambridge, MA 1998, pp. 132–139.
|
| [85] |
C. Ge, E. Cretu, Microsyst. Nanoeng. 2023, 9, 151.
|
| [86] |
T. Sharma, S. Je, B. Gill, J. X. J. Zhang, Sens. Actuators, A 2012, 177, 87.
|
| [87] |
J. Shi, S. Liu, L. Zhang, B. Yang, L. Shu, Y. Yang, M. Ren, Y. Wang, J. Chen, W. Chen, Y. Chai, X. Tao, Adv. Mater. 2020, 32, e1901958.
|
| [88] |
E. Nour, C. Chey, M. Willander, O. Nur, Phys. Status Solidi A 2016, 213, 2503.
|
| [89] |
Y. H. Wang, P. Song, X. Li, C. Ru, G. Ferrari, P. Balasubramanian, M. Amabili, Y. Sun, X. Liu, Micromachines 2018, 9, 19.
|
| [90] |
C. K. Jeong, C. Baek, A. I. Kingon, K. I. Park, S. H. Kim, Small 2018, 14, e1704022.
|
| [91] |
L. Jin, S. Ma, W. Deng, C. Yan, T. Yang, X. Chu, G. Tian, D. Xiong, J. Lu, W. Yang, Nano Energy 2018, 50, 632.
|
| [92] |
T. Sekine, K. Ito, Y. Shouji, R. Suga, T. Yasuda, Y. Wang, Y. Takeda, D. Kumaki, F. Santos, H. Tong, A. Miyabo, S. Tokito, Appl. Mater. Today 2023, 33, 101877.
|
| [93] |
A. Lakehal, Z. Ghemari, Ferroelectrics 2016, 493, 93.
|
| [94] |
A. Partridge, J. Reynolds, B. Chui, E. Chow, A. Fitzgerald, L. Zhang, N. Maluf, T. Kenny, J. Microelectromech. Syst. 2000, 9, 58.
|
| [95] |
M. Yu, C. Jia, X. Han, Y. Xia, L. Zhao, P. Yang, D. Lu, Y. Wang, X. Wang, Z. Jiang, Meas. Sci. Technol. 2023, 34, 125159.
|
| [96] |
Y. Xu, L. Zhao, Z. Jiang, J. Ding, N. Peng, Y. Zhao, Sensors 2016, 16, 210.
|
| [97] |
Z. Wu, B. Zhang, H. Zou, Z. Lin, G. Liu, Z. L. Wang, Adv. Energy Mater. 2019, 9, 1901124.
|
| [98] |
X. Lu, H. Li, X. Zhang, B. Gao, T. Cheng, Nano Energy 2022, 96, 107094.
|
| [99] |
Z. He, K. Wang, Z. Zhao, T. Zhang, Y. Li, L. Wang, Biosensors 2022, 12, 620.
|
| [100] |
S. Gandla, J. Song, J. Shin, S. Baek, M. Lee, D. Khan, K. Y. Lee, J. H. Kim, S. Kim, ACS Appl. Mater. Interfaces 2021, 13, 54162.
|
| [101] |
C. Li, M. Jia, Y. Hong, Y. Xue, J. Xiong, Front. Inf. Technol. Electron. Eng. 2022, 23, 801.
|
| [102] |
Y. Liu, D. Li, Y. Hou, Z. L. Wang, Adv. Mater. Technol. 2022, 8, 2200746.
|
| [103] |
F. Wu, H. Zhao, Y. Zhao, H. Zhong, Int. J. Telemed. Appl. 2015, 2015, 576364.
|
| [104] |
Z. Wang, S. Yang, S. Miao, Q. Shi, T. He, C. Lee, Nanomaterials 2019, 9, 690.
|
| [105] |
X. Luo, L. Zhu, Y. C. Wang, J. Li, J. Nie, Z. L. Wang, Adv. Funct. Mater. 2021, 31, 2104928.
|
| [106] |
L. Lonini, A. Dai, N. Shawen, T. Simuni, C. Poon, L. Shimanovich, M. Daeschler, R. Ghaffari, J. A. Rogers, A. Jayaraman, NPJ Digital Med. 2018, 1, 64.
|
| [107] |
C. Jiang, C. Wu, X. Li, Y. Yao, L. Lan, F. Zhao, Z. Ye, Y. Ying, J. Ping, Nano Energy 2019, 59, 268.
|
| [108] |
N. Zhou, H. Ao, X. Chen, H. Jiang, Nano Energy 2022, 96, 107127.
|
| [109] |
S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, M. Turon, in Proc. 6th Int. Conf. Inf. Process. Sens. Netw., IEEE, Cambridge, MA 2007, pp. 254–263.
|
| [110] |
L. Zhu, Y. Fu, R. Chow, B. F. Spencer, J. W. Park, K. Mechitov, Sensors 2018, 18, 2.
|
| [111] |
K. Huang, Y. Zhou, Z. Zhang, H. Zhang, C. Lü, J. Luo, L. Shen, Nano Energy 2023, 118, 108960.
|
| [112] |
X. Zhao, G. Wei, X. Li, Y. Qin, D. Xu, W. Tang, H. Yin, X. Wei, L. Jia, Nano Energy 2017, 34, 549.
|
| [113] |
Y. K. Pang, X. H. Li, M. X. Chen, C. B. Han, C. Zhang, Z. L. Wang, ACS Appl. Mater. Interfaces 2015, 7, 19076.
|
RIGHTS & PERMISSIONS
2025 The Author(s). FlexMat published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Posts & Telecommunications.