Design of experiments with the support of machine learning for process parameter optimization of all-smallmolecule organic solar cells

Kuo Wang , Jiaojiao Liang , Zhennan Li , Haixin Zhou , Cong Nie , Jiahao Deng , Xiaojie Zhao , Xinyu Peng , Ziye Chen , Zhiyan Peng , Di Huang , Hun Soo Jang , Jaemin Kong , Yingping Zou

FlexMat ›› 2024, Vol. 1 ›› Issue (3) : 234 -247.

PDF (5331KB)
FlexMat ›› 2024, Vol. 1 ›› Issue (3) : 234 -247. DOI: 10.1002/flm2.34
ARTICLE

Design of experiments with the support of machine learning for process parameter optimization of all-smallmolecule organic solar cells

Author information +
History +
PDF (5331KB)

Abstract

Traditionally, squaraine dyes have been studied and employed in biomedical research due to their excellent optical properties, and the molecules are being adopted in different research fields such as organic solar cells. In this study, we investigate correlations between solar cell performance and processing parameters of all-small-molecule bulk heterojunction solar cells comprising squaraine (SQ) as electron donor (D) and non-fullerene small molecules (e.g., ITIC) as electron acceptor (A) with the help of machine learning (ML) and design of experiment (DoE) methods. Among the five predictive ML models tested with the selected parameters, the eXtreme gradient boosting model shows the satisfactory results with quite high coefficient of determination of 0.999 and 0.997 in training and testing sets, respectively. By measuring the contribution of each input variable to solar cell efficiency, four process parameters, that is, the total concentration, the ratio of D/A, the rotational speed of spin coating, and the annealing temperature, are found to be the key features strongly correlated to solar cell efficiency. From contour plots in DoE, the highest solar cell efficiency of approximately 5% can be predicted under the conditions of 15 mg mL-1 in solution concentration, a 1:2 mix ratio of D and A, rotational speeds ranging from 800 to 900 rpm, and annealing temperatures within 100–110°C. Using the suggested parameter conditions, we fabricated solar cells, achieving a quite high efficiency of approximately 4%. Besides the global optimization conditions, we also employ the solvent vapor annealing combination to the thermal annealing to facilitate further mobilization of molecules and more optimized microstructure of bulk heterojunction films, resulting in a further enhancement in solar cell efficiency of more than 20%.

Keywords

all-small-molecule organic solar cells / design of experiments / machine learning / morphology / processing optimization

Cite this article

Download citation ▾
Kuo Wang, Jiaojiao Liang, Zhennan Li, Haixin Zhou, Cong Nie, Jiahao Deng, Xiaojie Zhao, Xinyu Peng, Ziye Chen, Zhiyan Peng, Di Huang, Hun Soo Jang, Jaemin Kong, Yingping Zou. Design of experiments with the support of machine learning for process parameter optimization of all-smallmolecule organic solar cells. FlexMat, 2024, 1(3): 234-247 DOI:10.1002/flm2.34

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Yi, G. Zhang, H. Yu, H. Yan, Nat. Rev. Mater. 2024, 9, 46.

[2]

R. Sun, Y. Wu, J. Guo, Y. Wang, F. Qin, B. Shen, D. Li, T. Wang, Y. Li, Y. Zhou, G. Lu, J. Min, Energy Environ. Sci. 2021, 14, 3174.

[3]

X. Ma, C. Wang, D. Deng, H. Zhang, L. Zhang, J. Zhang, Y. Yang, Z. Wei, Small 2024, 20, 2309042.

[4]

S. Lee, H. S. Kim, H. J. Park, N. Yang, B. Lim, D.-H. Hwang, Dyes Pigm. 2023, 218, 111491.

[5]

M. Privado, F. G. Guijarro, P. de la Cruz, R. Singhal, F. Langa, G. D. Sharma, ACS Appl. Mater. Interfaces 2021, 13, 6461.

[6]

K. Liu, Y. Jiang, G. Ran, F. Liu, W. Zhang, X. Zhu, Joule 2024, 8, 835.

[7]

P. Wu, Y. Duan, Y. Li, X. Xu, R. Li, L. Yu, Q. Peng, Adv. Mater. 2024, 36, 2306990.

[8]

I. Angunawela, L. Ye, H. Bin, Z.-G. Zhang, A. Gadisa, Y. Li, H. Ade, Mater. Chem. Front. 2019, 3, 137.

[9]

M. Jiang, H.-F. Zhi, B. Zhang, C. Yang, A. Mahmood, M. Zhang, H. Y. Woo, F. Zhang, J.-L. Wang, Q. An, ACS Energy Lett. 2023, 8, 1058.

[10]

J. Guo, B. Qiu, X. Xia, J. Zhang, S. Qin, X. Li, X. Lu, L. Meng, Z. Zhang, Y. Li, Adv. Energy Mater. 2023, 13, 2300481.

[11]

S. Madduri, V. GKodange, S. S. K. Raavi, S. G. Singh, IEEE J. Photovoltaics 2023, 13, 411.

[12]

M. Jiang, H.-r. Bai, H.-f. Zhi, J.-k. Sun, J.-l. Wang, F. Zhang, Q. An, ACS Energy Lett. 2021, 6, 2898.

[13]

D. Zomerman, J. Kong, S. M. McAfee, G. C. Welch, T. L. Kelly, ACS Appl. Energy Mater. 2018, 1, 5663.

[14]

H. Liu, Y. Fu, Z. Chen, J. Wang, J. Fu, Y. Li, G. Cai, C. J. Su, U. S. Jeng, H. Zhu, X. Lu, Adv. Funct. Mater. 2023, 33, 2303307.

[15]

W. Xu, Z. Liu, R. T. Piper, J. W. Hsu, Sol. Energy Mater. Sol. Cells 2023, 249, 112055.

[16]

Y. Wu, J. Guo, R. Sun, J. Min, npj Comput. Mater. 2020, 6, 120.

[17]

N. Meftahi, M. Klymenko, A. J. Christofferson, U. Bach, D. A. Winkler, S. P. Russo, npj Comput. Mater. 2020, 6, 166.

[18]

G. J. Moore, O. Bardagot, N. Banerji, Adv. Theory Simul. 2022, 5, 2100511.

[19]

D. Huang, Z. Li, K. Wang, H. Zhou, X. Zhao, X. Peng, R. Zhang, J. Wu, J. Liang, L. Zhao, Polymers 2023, 15, 2954.

[20]

M. Hußner, R. A. Pacalaj, G. Olaf Müller-Dieckert, C. Liu, Z. Zhou, N. Majeed, S. Greedy, I. Ramirez, N. Li, S. M. Hosseini, Adv. Energy Mater. 2024, 14, 2303000.

[21]

L. Cao, D. Russo, K. Felton, D. Salley, A. Sharma, G. Keenan, W. Mauer, H. Gao, L. Cronin, A. A. Lapkin, Cell Rep. Phys. Sci. 2021, 2, 100295.

[22]

C. Guo, Z. Li, K. Wang, X. Zhou, D. Huang, J. Liang, L. Zhao, Phys. Chem. Chem. Phys. 2022, 24, 22538.

[23]

K. Wang, C. Guo, Z. Li, R. Zhang, Z. Feng, G. Fang, D. Huang, J. Liang, L. Zhao, Z. Li, Mol. Syst. Des. Eng. 2023, 8, 799.

[24]

D. Huang, K. Wang, Z. Li, H. Zhou, X. Zhao, X. Peng, J. Wu, J. Liang, J. Meng, L. Zhao, Chem. Eng. J. 2023, 475, 145958.

[25]

B. Cao, L. A. Adutwum, A. O. Oliynyk, E. J. Luber, B. C. Olsen, A. Mar, J. M. Buriak, ACS Nano 2018, 12, 7434.

[26]

E. A. J Abadi, H. Sahu, S. M. Javadpour, M. Goharimanesh, Mater. Today Energy 2022, 25, 100969.

[27]

Z. Liu, N. Rolston, A. C. Flick, T. W. Colburn, Z. Ren, R. H. Dauskardt, T. Buonassisi, Joule 2022, 6, 834.

[28]

F. Xie, J. Fang, L. Zhang, D. Deng, Y. Chen, Z. Wei, F. Guo, C.-Q. Ma, ACS Appl. Mater. Interfaces 2024, 16, 11767.

[29]

H. Zhang, C. Wang, X. Li, J. Jing, Y. Sun, Y. Liu, Sol. Energy 2017, 157, 71.

[30]

S. D. Collins, N. A. Ran, M. C. Heiber, T. Q. Nguyen, Adv. Energy Mater. 2017, 7, 1602242.

[31]

E. Rendon, R. Alejo, C. Castorena, F. J Isidro-Ortega, E. E. Granda-Gutierrez, Appl. Sci. 2020, 10, 1276.

[32]

J. Min, X. Jiao, V. Sgobba, B. Kan, T. Heumüller, S. Rechberger, E. Spiecker, D. M. Guldi, X. Wan, Y. Chen, H. Ade, C. J. Brabec, Nano Energy 2016, 28, 241.

[33]

L. J. Richter, D. M. DeLongchamp, A. Amassian, Chem. Rev. 2017, 117, 6332.

[34]

F. Zhao, C. Wang, X. Zhan, Adv. Energy Mater. 2018, 8, 1703147.

[35]

Y. Zheng, J. Huang, G. Wang, J. Kong, D. Huang, M. M. Beromi, N. Hazari, A. D. Taylor, J. Yu, Mater. Today 2018, 21, 79.

[36]

Y. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 2015, 27, 1170.

[37]

Q. An, F. Zhang, L. Li, J. Wang, J. Zhang, L. Zhou, W. Tang, ACS Appl. Mater. Interfaces 2014, 6, 6537.

[38]

B. Qiu, Z. Chen, S. Qin, J. Yao, W. Huang, L. Meng, H. Zhu, Y. Yang, Z. G. Zhang, Y. Li, Adv. Mater. 2020, 32, 1908373.

[39]

Z. Wang, Z. Peng, Z. Xiao, D. Seyitliyev, K. Gundogdu, L. Ding, H. Ade, Adv. Mater. 2020, 32, 2005386.

[40]

C. L. Radford, R. D. Pettipas, T. L. Kelly, J. Phys. Chem. Lett. 2020, 11, 6450.

[41]

R. Datt, Suman, A. Bagui, A. Siddiqui, R. Sharma, V. Gupta, S. Yoo, S. Kumar, S. P. Singh, Sci. Rep. 2019, 9, 8529.

[42]

B. Wang, Y. Fu, C. Yan, R. Zhang, Q. Yang, Y. Han, Z. Xie, Front. Chem. 2018, 6, 198.

[43]

X. Li, Z. He, M. Sun, H. Zhang, Z. Guo, Y. Xu, H. Li, C. Liang, X. Jing, Chin. Phys. B. 2019, 28, 088802.

[44]

G. Wei, S. Wang, K. Sun, M. E. Thompson, S. R. Forrest, Adv. Energy Mater. 2011, 1, 184.

[45]

J. Xu, S. B. Jo, X. Chen, G. Zhou, M. Zhang, X. Shi, F. Lin, L. Zhu, T. Hao, K. Gao, Y. Zou, X. Su, W. Feng, A. K. Jen, Y. Zhang, F. Liu, Adv. Mater. 2022, 34, 2108317.

[46]

G. Chen, H. Sasabe, Y. Sasaki, H. Katagiri, X.-F. Wang, T. Sano, Z. Hong, Y. Yang, J. Kido, Chem. Mater. 2014, 26, 1356.

[47]

Y. Li, Y. Guo, Z. Chen, L. Zhan, C. He, Z. Bi, N. Yao, S. Li, G. Zhou, Y. Yi, Y. M. Yang, H. Zhu, W. Ma, F. Gao, F. Zhang, L. Zuo, H. Chen, Energy Environ. Sci. 2022, 15, 855.

[48]

Z. Liang, L. Yan, N. Wang, J. Si, S. Liu, Y. Wang, J. Tong, J. Li, B. Zhao, C. Gao, X. Hou, Adv. Funct. Mater. 2024, 34, 2310312.

[49]

X. Zhang, H. Wang, D. Li, M. Chen, Y. Mao, B. Du, Y. Zhuang, W. Tan, W. Huang, Y. Zhao, D. Liu, T. Wang, Macromolecules 2020, 53, 3747.

[50]

M. Zhang, J. Wang, F. Zhang, Y. Mi, Q. An, W. Wang, X. Ma, J. Zhang, X. Liu, Nano Energy 2017, 39, 571.

[51]

Y. Tamai, Y. Murata, S. i. Natsuda, Y. Sakamoto, Adv. Energy Mater. 2024, 14, 2301890.

[52]

T. Goh, J.-S. Huang, E. A. Bielinski, B. A. Thompson, S. Tomasulo, M. L. Lee, M. Y. Sfeir, N. Hazari, A. D. Taylor, ACS Photonics 2015, 2, 86.

[53]

J. M. Montero, J. Bisquert, J. Appl. Phys. 2011, 110, 043705.

RIGHTS & PERMISSIONS

2024 The Author(s). FlexMat published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Posts & Telecommunications.

AI Summary AI Mindmap
PDF (5331KB)

270

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/