Realizing record efficiencies for ultra-thin organic photovoltaics through step-by-step optimizations of silver nanowire transparent electrodes

Xiangjun Zheng, Yiming Wang, Tianyi Chen, Yibo Kong, Xiaoling Wu, Cun Zhou, Qun Luo, Chang-Qi Ma, Lijian Zuo, Minmin Shi, Hongzheng Chen

FlexMat ›› 2024, Vol. 1 ›› Issue (3) : 221-233.

PDF
FlexMat ›› 2024, Vol. 1 ›› Issue (3) : 221-233. DOI: 10.1002/flm2.30
ARTICLE

Realizing record efficiencies for ultra-thin organic photovoltaics through step-by-step optimizations of silver nanowire transparent electrodes

Author information +
History +

Abstract

Ultra-thin (also known as ultra-flexible) organic photovoltaics (OPVs) represent a strong contender among emerging photovoltaic technologies. However, due to the imbalance between the optical and electrical properties of indium tin oxide (ITO)-free transparent electrodes, the ultra-thin OPVs often exhibit lower efficiency compared to the brittle yet more balanced rigid ITO counterparts. Here, we design and fabricate an advanced ultra-thin OPV, which involves a thoroughly optimized silver nanowires (AgNWs) transparent electrode (named AZAT) with excellent optical, electrical and mechanical properties. Specifically, the high-kinetic energy spray-coating method successfully yields a curve-shaped, tightly connected and uniformly distributed AgNWs film, complemented by a capping layer of zinc oxide:aluminum-doped zinc oxide (ZnO:AZO) to improve charge collection capability. Simultaneously, the transparency of the electrode is enhanced through precise optical optimization. Thus, we implant the AZAT-based devices on 1.3 μm polyimide substrates and demonstrate ultra-thin OPVs with a record efficiency of 18.46% and a power density of 40.31 W g-1, which is the highest value for PV technologies. Encouragingly, the AZAT electrode also enables the 10.0 cm2 device to exhibit a high efficiency of 15.67%. These results provide valuable insights for the development of ultra-thin OPVs with high efficiency, low cost, superior flexibility, and up-scaling capacity.

Keywords

AgNWs transparent electrode / ITO-free devices / large-area devices / ultra-flexible organic photovoltaics / ultra-thin organic photovoltaics

Cite this article

Download citation ▾
Xiangjun Zheng, Yiming Wang, Tianyi Chen, Yibo Kong, Xiaoling Wu, Cun Zhou, Qun Luo, Chang-Qi Ma, Lijian Zuo, Minmin Shi, Hongzheng Chen. Realizing record efficiencies for ultra-thin organic photovoltaics through step-by-step optimizations of silver nanowire transparent electrodes. FlexMat, 2024, 1(3): 221‒233 https://doi.org/10.1002/flm2.30

References

[1]
G. Chen, X. Xiao, X. Zhao, T. Tat, M. Bick, J. Chen, Chem. Rev. 2022, 122, 3259.
CrossRef Google scholar
[2]
S. Park, S. W. Heo, W. Lee, D. Inoue, Z. Jiang, K. Yu, H. Jinno, D. Hashizume, M. Sekino, T. Yokota, K. Fukuda, K. Tajima, T. Someya, Nature 2018, 561, 516.
CrossRef Google scholar
[3]
X. Zheng, L. Zuo, K. Yan, S. Shan, T. Chen, G. Ding, B. Xu, X. Yang, J. Hou, M. Shi, H. Chen, Energy Environ. Sci. 2023, 16, 2284.
CrossRef Google scholar
[4]
X. Zheng, L. Zuo, F. Zhao, Y. Li, T. Chen, S. Shan, K. Yan, Y. Pan, B. Xu, C. Z. Li, M. Shi, J. Hou, H. Chen, Adv. Mater. 2022, 34, 2200044.
[5]
X. Zheng, X. Wu, Q. Wu, Y. Han, G. Ding, Y. Wang, Y. Kong, T. Chen, M. Wang, Y. Zhang, J. Xue, W. Fu, Q. Luo, C. Ma, W. Ma, L. Zuo, M. Shi, H. Chen, Adv. Mater. 2023, 36, 2307280.
[6]
T. Chen, S. Li, Y. Li, Z. Chen, H. Wu, Y. Lin, Y. Gao, M. Wang, G. Ding, J. Min, Z. Ma, H. Zhu, L. Zuo, H. Chen, Adv. Mater. 2023, 35, 2300400.
[7]
S. Xiong, K. Fukuda, K. Nakano, S. Lee, Y. Sumi, M. Takakuwa, D. Inoue, D. Hashizume, B. Du, T. Yokota, Y. Zhou, K. Tajima, T. Someya, Nat. Commun. 2024, 15, 681.
[8]
D. Wang, H. Liu, Y. Li, G. Zhou, L. Zhan, H. Zhu, X. Lu, H. Chen, C.-Z. Li, Joule 2021, 5, 945.
CrossRef Google scholar
[9]
L. Zhan, S. Li, Y. Li, R. Sun, J. Min, Z. Bi, W. Ma, Z. Chen, G. Zhou, H. Zhu, M. Shi, L. Zuo, H. Chen, Joule 2022, 6, 662.
CrossRef Google scholar
[10]
S. Guan, Y. Li, K. Yan, W. Fu, L. Zuo, H. Chen, Adv. Mater. 2022, 34, 2205844.
[11]
L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, Z. Zhou, R. Zeng, H. Zhu, C. C. Chen, R. C. I. MacKenzie, Y. Zou, J. Nelson, Y. Zhang, Y. Sun, F. Liu, Nat. Mater. 2022, 21, 656.
CrossRef Google scholar
[12]
T. Chen, X. Zheng, D. Wang, Y. Zhu, Y. Ouyang, J. Xue, M. Wang, S. Wang, W. Ma, C. Zhang, Z. Ma, S. Li, L. Zuo, H. Chen, Adv. Mater. 2024, 36, 2207544.
[13]
Y. Jiang, X. Dong, L. Sun, T. Liu, F. Qin, C. Xie, P. Jiang, L. Hu, X. Lu, X. Zhou, W. Meng, N. Li, C. J. Brabec, Y. Zhou, Nat. Energy 2022, 7, 352.
CrossRef Google scholar
[14]
L. Zuo, S. B. Jo, Y. Li, Y. Meng, R. J. Stoddard, Y. Liu, F. Lin, X. Shi, F. Liu, H. W. Hillhouse, D. S. Ginger, H. Chen, A. K. Jen, Nat. Nanotechnol. 2022, 17, 53.
CrossRef Google scholar
[15]
Y. Han, Z. Hu, W. Zha, X. Chen, L. Yin, J. Guo, Z. Li, Q. Luo, W. Su, C. Q. Ma, Adv. Mater. 2022, 34, 2110276.
[16]
X. He, Z. X. Liu, H. Chen, C. Z. Li, Adv. Mater. Interfaces 2024, 36, 2306681.
[17]
W. Liu, H. Zhang, S. Liang, T. Wang, S. He, Y. Hu, R. Zhang, H. Ning, J. Ren, A. Bakulin, F. Gao, J. Yuan, Y. Zou, Angew. Chem., Int. Ed. 2023, 62, 202311645.
[18]
S. Guan, Y. Li, C. Xu, N. Yin, C. Xu, C. Wang, M. Wang, Y. Xu, Q. Chen, D. Wang, L. Zuo, H. Chen, Adv. Mater. 2024, 36, 2400342.
[19]
Y. Jiang, S. Sun, R. Xu, F. Liu, X. Miao, G. Ran, K. Liu, Y. Yi, W. Zhang, X. Zhu, Nat. Energy 2024, 9, 975.
CrossRef Google scholar
[20]
Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule 2022, 6, 171.
CrossRef Google scholar
[21]
J. Wang, Z. Zheng, P. Bi, Z. Chen, Y. Wang, X. Liu, S. Zhang, X. Hao, M. Zhang, Y. Li, J. Hou, Natl. Sci. Rev. 2023, 10, 085.
[22]
Z. Wang, Y. Bo, P. Bai, S. Zhang, G. Li, X. Wan, Y. Liu, R. Ma, Y. Chen, Science 2023, 382, 1291.
CrossRef Google scholar
[23]
H. Jinno, T. Yokota, M. Koizumi, W. Yukita, M. Saito, I. Osaka, K. Fukuda, T. Someya, Nat. Commun. 2021, 12, 2234.
[24]
H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, T. Someya, Nat. Energy 2017, 2, 780.
CrossRef Google scholar
[25]
K. Fukuda, K. Yu, T. Someya, Adv. Energy Mater. 2020, 10, 2000765.
[26]
R. Verduci, V. Romano, G. Brunetti, N. Yaghoobi Nia, A. Di Carlo, G. D’Angelo, C. Ciminelli, Adv. Energy Mater. 2022, 12, 2200125.
[27]
F. Qin, W. Wang, L. Sun, X. Jiang, L. Hu, S. Xiong, T. Liu, X. Dong, J. Li, Y. Jiang, J. Hou, K. Fukuda, T. Someya, Y. Zhou, Nat. Commun. 2020, 11, 4508.
[28]
W. Song, K. Yu, E. Zhou, L. Xie, L. Hong, J. Ge, J. Zhang, X. Zhang, R. Peng, Z. Ge, Adv. Funct. Mater. 2021, 31, 2102694.
[29]
H. Lee, S. Jeong, J.-H. Kim, Y.-R. Jo, H. J. Eun, B. Park, S. C. Yoon, J. H. Kim, S.-H. Lee, S. Park, npj Flexible Electron. 2023, 7, 27.
[30]
W. Song, Q. Ye, S. Yang, L. Xie, Y. Meng, Z. Chen, Q. Gu, D. Yang, J. Shi, Z. Ge, Angew. Chem., Int. Ed. 2023, 62, 202310034.
[31]
Z. Wang, J. Guo, Y. Pan, J. Fang, C. Gong, L. Mo, Q. Luo, J. Lin, C. Ma, Energy Environ. Mater. 2023, 0, 12592.
[32]
J. Wan, Y. Xia, J. Fang, Z. Zhang, B. Xu, J. Wang, L. Ai, W. Song, K. N. Hui, X. Fan, Y. Li, Nano-Micro Lett. 2021, 13, 44.
[33]
Y. Xu, Z. Lin, W. Wei, Y. Hao, S. Liu, J. Ouyang, J. Chang, Nano-Micro Lett. 2022, 14, 117.
[34]
G. Zeng, W. Chen, X. Chen, Y. Hu, Y. Chen, B. Zhang, H. Chen, W. Sun, Y. Shen, Y. Li, F. Yan, Y. Li, J. Am. Chem. Soc. 2022, 144, 8658.
CrossRef Google scholar
[35]
C. Xie, Y. Liu, W. Wei, Y. Zhou, Adv. Funct. Mater. 2022, 33, 2210675.
[36]
Y. Sun, M. Chang, L. Meng, X. Wan, H. Gao, Y. Zhang, K. Zhao, Z. Sun, C. Li, S. Liu, H. Wang, J. Liang, Y. Chen, Nat. Electron. 2019, 2, 513.
CrossRef Google scholar
[37]
H.-Y. Hou, Y.-F. Zhang, J.-D. Chen, H.-M. Liu, H. Ren, Y.-Q. Li, H. Mao, J.-X. Tang, Chem. Eng. J. 2022, 450, 138181.
CrossRef Google scholar
[38]
G. Wang, J. Zhang, C. Yang, Y. Wang, Y. Xing, M. A. Adil, Y. Yang, L. Tian, M. Su, W. Shang, K. Lu, Z. Shuai, Z. Wei, Adv. Mater. 2020, 32, 2005153.
[39]
J. Huang, Z. Lu, J. He, H. Hu, Q. Liang, K. Liu, Z. Ren, Y. Zhang, H. Yu, Z. Zheng, G. Li, Energy Environ. Sci. 2023, 16, 1251.
CrossRef Google scholar
[40]
S. Sun, W. Zha, C. Tian, Z. Wei, Q. Luo, C. Q. Ma, W. Liu, X. Zhu, Adv. Mater. 2023, 35, 2305092.
[41]
E. Pantoja, R. Bhatt, A. Liu, M. C. Gupta, Nanotechnology 2017, 28, 505708.
CrossRef Google scholar
[42]
J. Lee, I. Lee, T. S. Kim, J. Y. Lee, Small 2013, 9, 2887.
CrossRef Google scholar
[43]
G. H. Lim, K. Ahn, S. Bok, J. Nam, B. Lim, Nanoscale 2017, 9, 8938.
CrossRef Google scholar
[44]
J. Crêpellière, K. Menguelti, S. Wack, O. Bouton, M. Gérard, P. L. Popa, B. R. Pistillo, R. Leturcq, M. Michel, ACS Appl. Nano Mater. 2021, 4, 1126.
CrossRef Google scholar
[45]
W. Pan, Y. Han, Z. Wang, C. Gong, J. Guo, J. Lin, Q. Luo, S. Yang, C.-Q. Ma, J. Mater. Chem. A 2021, 9, 16889.
[46]
Y. Li, X. Ru, M. Yang, Y. Zheng, S. Yin, C. Hong, F. Peng, M. Qu, C. Xue, J. Lu, L. Fang, C. Su, D. Chen, J. Xu, C. Yan, Z. Li, X. Xu, Z. Shao, Nature 2024, 626, 105.
CrossRef Google scholar
[47]
J. Schön, G. M. M. W. Bissels, P. Mulder, R. H. van Leest, N. Gruginskie, E. Vlieg, D. Chojniak, D. Lackner, Prog. Photovoltaics 2022, 30, 1003.
CrossRef Google scholar
[48]
M. M. Tavakoli, M. H. Gharahcheshmeh, N. Moody, M. G. Bawendi, K. K. Gleason, J. Kong, Adv. Mater. Interfaces 2020, 7, 2000498.
[49]
J. Wu, P. Chen, H. Xu, M. Yu, L. Li, H. Yan, Y. Huangfu, Y. Xiao, X. Yang, L. Zhao, W. Wang, Q. Gong, R. Zhu, Sci. China Mater. 2022, 65, 2319.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Author(s). FlexMat published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Posts & Telecommunications.
PDF

Accesses

Citations

Detail

Sections
Recommended

/