Reconfigurable flexible thermoelectric generators based on all-inorganic MXene/Bi2Te3 composite films

Yunhe Xu , Bo Wu , Chengyi Hou , Yaogang Li , Hongzhi Wang , Qinghong Zhang

FlexMat ›› 2024, Vol. 1 ›› Issue (3) : 248 -257.

PDF (2079KB)
FlexMat ›› 2024, Vol. 1 ›› Issue (3) : 248 -257. DOI: 10.1002/flm2.28
ARTICLE

Reconfigurable flexible thermoelectric generators based on all-inorganic MXene/Bi2Te3 composite films

Author information +
History +
PDF (2079KB)

Abstract

Flexible thermoelectric generators (FTEGs) represent an excellent solution for energizing wearable electronics, capitalizing on their ability to transform body heat into electrical energy. Nevertheless, their use in the wearable industry is limited by the insufficient thermoelectric (TE) efficiency of materials and the minimal temperature variation among the devices. In this study, we have developed a Lego-like reconfigurable FTEG by combining flexible TE chips, rheological liquid-metal electrical wiring, and a stretchable substrate in a mechanical plug-in configuration. The flexible TE chips are constructed from n-type all-inorganic MXene/Bi2Te3 composite films, which have their TE properties further enhanced through heat treatment. A demonstration of the FTEG illustrates its capability to convert heat into vertical temperature difference (ΔT), leading to a substantial ΔT at the cold end in contact with the environment, resulting in a power output of 7.1 µW with a ΔT of 45 K from only 5 TE chips. The reconfigurable FTEG presents significant potential for wearable devices to harness low-grade heat.

Keywords

3D structure / flexible thermoelectric / Lego-like reconfigurability / MXene/Bi2Te3

Cite this article

Download citation ▾
Yunhe Xu, Bo Wu, Chengyi Hou, Yaogang Li, Hongzhi Wang, Qinghong Zhang. Reconfigurable flexible thermoelectric generators based on all-inorganic MXene/Bi2Te3 composite films. FlexMat, 2024, 1(3): 248-257 DOI:10.1002/flm2.28

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. Chen, Y. Li, M. Bick, J. Chen, Chem. Rev. 2020, 120, 3668.

[2]

M. Gao, P. Wang, L. Jiang, B. Wang, Y. Yao, S. Liu, D. Chu, W. Cheng, Y. Lu, Energy Environ. Sci. 2021, 14, 2114.

[3]

V. Shalini, S. Harish, H. Ikeda, Y. Hayakawa, J. Archana, M. Navaneethan, J. Colloid Interf. Sci. 2023, 633, 120.

[4]

X. Xiao, Z. Zheng, X. Zhong, R. Gao, Z. Piao, M. Jiao, G. Zhou, ACS Nano 2023, 17, 1764.

[5]

L. Wang, Y. Zhang, P. G. Bruce, Nati. Sci. Rev. 2023, 10, nwac062.

[6]

Q. Yu, Y. Nie, S. Peng, Y. Miao, C. Zhai, R. Zhang, J. Han, S. Zhao, M. Pecht, Appl. Energy 2023, 349, 121674.

[7]

H. He, Y. Fu, T. Zhao, X. Gao, L. Xing, Y. Zhang, X. Xue, Nano Energy 2017, 39, 590.

[8]

W. Yang, W. Gong, C. Hou, Y. Su, Y. Guo, W. Zhang, Y. Li, Q. Zhang, H. Wang, Nat. Commun. 2019, 10, 5541.

[9]

Z. Wang, Y. Bo, P. Bai, S. Zhang, G. Li, X. Wan, Y. Liu, R. Ma, Y. Chen, Science 2023, 382, 1291.

[10]

K. Dong, X. Peng, Z. L. Wang, Adv. Mater. 2020, 32, e1902549.

[11]

C. Mytafides, L. Tzounis, G. Karalis, P. Formanek, A. Paipetis, J. Power Sources 2021, 507, 230323.

[12]

T. Ding, K. H. Chan, Y. Zhou, X. Q. Wang, Y. Cheng, T. Li, G. W. Ho, Nat. Commun. 2020, 11, 6006.

[13]

Y. Lin, C. Lee, C. Wu, J. Lin, T. Lee, S. Tung, C. Liu, J. Power Sources 2023, 556, 232516.

[14]

W. Ren, Y. Sun, D. Zhao, A. Aili, S. Zhang, C. Shi, J. Zhang, H. Geng, J. Zhang, L. Zhang, J. Xiao, R. Yang, Sci. Adv. 2021, 7, 118158.

[15]

X. Zhang, Y. Hou, Y. Yang, Z. Wang, X. Liang, Q. He, Y. Xu, X. Sun, H. Ma, J. Liang, Y. Liu, W. Wu, H. Yu, H. Guo, R. Xiong, Adv. Mater. 2022, 35, 106228.

[16]

Q. Yang, S. Yang, P. Qiu, L. Peng, T. R. Wei, Z. Zhang, X. Shi, L. Chen, Science 2022, 377, 854.

[17]

T. Sun, L. Wang, W. Jiang, Mater. Today 2022, 57, 121.

[18]

T. Cao, X. L. Shi, Z. G. Chen, Prog. Mater. Sci. 2023, 131, 101003.

[19]

Z. Chen, Y. Li, C. Gao, X. Fan, H. Li, L. Yang, J. Colloid Interf. Sci. 2023, 646, 824.

[20]

J. Vinodhini, V. Shalini, S. Harish, H. Ikeda, J. Archana, M. Navaneethan, J. Colloid Interf. Sci. 2023, 651, 436.

[21]

L. Deng, Y. Liu, Y. Zhang, S. Wang, P. Gao, Adv. Funct. Mater. 2023, 33, 2210770.

[22]

H. Jin, J. Li, J. Iocozzia, X. Zeng, P. C. Wei, C. Yang, N. Li, Z. Liu, J. H. He, T. Zhu, J. Wang, Z. Lin, S. Wang, Angew. Chem. Int. Ed. 2019, 58, 15206.

[23]

L. Wang, Z. Zhang, Y. Liu, B. Wang, L. Fang, J. Qiu, K. Zhang, S. Wang, Nat. Commun. 2018, 9, 3817.

[24]

Y. Liu, P. Liu, Q. Jiang, F. Jiang, J. Liu, G. Liu, C. Liu, Y. Du, J. Xu, Chem. Eng. J. 2021, 405, 126510.

[25]

Y. T. Malik, Z. A. Akbar, J. Y. Seo, S. Cho, S. Y. Jang, J. W. Jeon, Adv. Energy Mater. 2022, 12, 2103070.

[26]

L. D. Hicks, M. S. Dresselhaus, J. Power Sources 2024, 600, 234260.

[27]

M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, P. Gogna, Adv. Mater. 2007, 19, 1043.

[28]

B. Wu, Y. Guo, C. Hou, Q. Zhang, Y. Li, H. Wang, Adv. Funct. Mater. 2019, 29, 1900304.

[29]

C. Dun, C. A. Hewitt, Q. Li, Y. Guo, Q. Jiang, J. Xu, G. Marcus, D. C. Schall, D. L. Carroll, Adv. Mater. 2017, 29, 1702968.

[30]

C. Dun, C. A. Hewitt, Q. Li, J. Xu, D. C. Schall, H. Lee, Q. Jiang, D. L. Carroll, Adv. Mater. 2017, 29, 1700070.

[31]

S. Hou, Y. Liu, L. Yin, C. Chen, Z. Wu, J. Wang, Y. Luo, W. Xue, X. Liu, Q. Zhang, F. Cao, Nano Energy 2021, 87, 106223.

[32]

L. Wang, K. Zhang, Energy Environ. Mater. 2020, 3, 67.

[33]

H. Lv, L. Liang, Y. Zhang, L. Deng, Z. Chen, Z. Liu, H. Wang, G. Chen, Nano Energy 2021, 88, 106260.

[34]

Q. Zhou, K. Zhu, J. Li, Q. Li, B. Deng, P. Zhang, Q. Wang, C. Guo, W. Wang, W. Liu, Adv. Sci. 2021, 8, 2004947.

[35]

S. Hong, Y. Gu, J. K. Seo, J. Wang, P. Liu, Y. S. Meng, S. Xu, R. Chen, Sci. Adv. 2019, 5, eaaw0536.

[36]

Y. Yang, H. Hu, Z. Chen, Z. Wang, L. Jiang, G. Lu, X. Li, R. Chen, J. Jin, H. Kang, H. Chen, S. Lin, S. Xiao, H. Zhao, R. Xiong, J. Shi, Q. Zhou, S. Xu, Y. Chen, Nano Lett. 2020, 20, 4445.

[37]

Y. Zhao, X. Zhang, X. Han, C. Hou, H. Wang, J. Qi, Y. Li, Q. Zhang, Chem. Eng. J. 2021, 417, 127912.

[38]

X. Han, L. An, Y. Hu, Y. Li, C. Hou, H. Wang, Q. Zhang, Appl. Catal. B-Environ. 2020, 265, 118539.

[39]

R. Li, X. Ma, J. Li, J. Cao, H. Gao, T. Li, X. Zhang, L. Wang, Q. Zhang, G. Wang, C. Hou, Y. Li, T. Palacios, Y. Lin, H. Wang, X. Ling, Nat. Commun. 2021, 12, 1587.

[40]

J. Luo, C. Sun, B. Chang, Y. Jing, K. Li, Y. Li, Q. Zhang, H. Wang, C. Hou, ACS Nano 2022, 16, 19373.

[41]

M. Zhao, M. Bosman, M. Danesh, M. Zeng, P. Song, Y. Darma, A. Rusydi, H. Lin, C. W. Qiu, K. P. Loh, Nano Lett. 2015, 15, 8331.

[42]

Y. Liang, W. Wang, B. Zeng, G. Zhang, J. Huang, J. Li, T. Li, Y. Song, X. Zhang, J. Alloys Compd. 2011, 509, 5147.

[43]

R. Liu, J. Li, M. Li, Q. Zhang, G. Shi, Y. Li, C. Hou, H. Wang, ACS Appl. Mater. Interfaces 2020, 12, 46446.

[44]

Y. Xu, B. Wu, C. Hou, Y. Li, H. Wang, Q. Zhang, Glob. Chall. 2023, 2300032.

[45]

X. Lu, Q. Zhang, J. Liao, H. Chen, Y. Fan, J. Xing, S. Gu, J. Huang, J. Ma, J. Wang, L. Wang, W. Jiang, Adv. Energy Mater. 2020, 10, 1902986.

[46]

S. Fan, T. Sun, M. Jiang, S. G, L. Wang, W. Jiang, J. Alloys Compd. 2023, 948, 169807.

[47]

H. Zhang, Y. Chen, X. Liu, H. Wang, C. Niu, S. Zheng, B. Zhang, X. Lu, G. Wang, G. Han, X. Zhou, Mater. Today Energy 2022, 30, 101137.

[48]

X. Jiang, B. Tian, Q. Sun, X. Li, J. Chen, J. Tang, P. Zhang, L. Yang, Z. Chen, J. Solid State Chem. 2021, 304, 122605.

RIGHTS & PERMISSIONS

2024 The Author(s). FlexMat published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Posts & Telecommunications.

AI Summary AI Mindmap
PDF (2079KB)

355

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/