Principles, fabrication, and applications of halide perovskites-based memristors

Xiaozhe Cheng , Zhitao Dou , Hong Lian , Zhitao Qin , Hongen Guo , Xifeng Li , Wai-Yeung Wong , Qingchen Dong

FlexMat ›› 2024, Vol. 1 ›› Issue (2) : 127 -149.

PDF (5877KB)
FlexMat ›› 2024, Vol. 1 ›› Issue (2) : 127 -149. DOI: 10.1002/flm2.25
REVIEW

Principles, fabrication, and applications of halide perovskites-based memristors

Author information +
History +
PDF (5877KB)

Abstract

In recent decades, the microelectronics industry has developed rapidly based on the von Neumann architecture and under the guidance of Moore’s law. However, as the size of electronic devices approaches the limit and power consumption increases, traditional microelectronic materials and devices are facing more and more challenges. As a new type of semiconductor material, halide perovskites (HPs) have excellent photoelectric characteristics, such as high carrier mobility, controllable band structure, etc., which have been widely used in solar cells, light emitting diodes (LEDs), photodetectors, memristors, and in other fields. Among them, the memristor, as a new type of electronic device, is very promising for in-memory computing with low power consumption by breaking the limit of von Neumann architecture. Especially, HPs-based memristors show outstanding photoelectric response performance, low power consumption, and flexible wearability, allowing them to hold great application potential in logical operation, polymorphic storage, and neuromorphic computing, etc. In this review, we first briefly introduce the basic characteristics and preparation methods of HPs. Secondly, the development history, device structure, and performance parameters of memristors are depicted in detail. Thirdly, the resistance mechanism and application of HPs-based memristors are discussed. Finally, the research status and development prospects of HPs-based memristors are outlined.

Keywords

artificial synapse / crystal structure / halide perovskites / memristor

Cite this article

Download citation ▾
Xiaozhe Cheng, Zhitao Dou, Hong Lian, Zhitao Qin, Hongen Guo, Xifeng Li, Wai-Yeung Wong, Qingchen Dong. Principles, fabrication, and applications of halide perovskites-based memristors. FlexMat, 2024, 1(2): 127-149 DOI:10.1002/flm2.25

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Zou, S. Xu, X. Chen, L. Yan, Y. Han, Sci. China Inf. Sci. 2021, 64, 160404.

[2]

W. A. Wulf, S. A. McKee, ACM SIGARCH Comput. Archit. News 1995, 23(1), 20.

[3]

J. Shalf, Philos. Trans. R. Soc. A 2020, 378(2166), 20190061.

[4]

T. N. Theis, H. S. P. Wong, Comput. Sci. Eng. 2017, 19, 41.

[5]

S. Mao, B. Sun B, G. Zhou, Y. Yang, H. Zhao, Y. Zhou, Y. Chen, Y. Zhao, Appl. Surf. Sci. 2022, 595, 153560.

[6]

R. Chaurasiya, L.-C. Shih, K.-T. Chen, J.-S. Chen, Mater. Today 2023, 68, 356.

[7]

Y. Xiao, B. Jiang, Z. Zhang, S. Ke, Y. Jin, X. Wen, C. Ye, Sci. Technol. Adv. Mater. 2023, 24(1), 2162323.

[8]

Y.-C. Liu, Y. Lin, Z.-Q. Wang, H.-Y. Xu, Acta Phys. Sin. 2019, 68, 168504.

[9]

Y. Chen, G. Liu, C. Wang, W. Zhang, R.-W. Li, L. Wang, Mater. Horiz. 2014, 1(5), 489.

[10]

D. M. Kullmann, K. P. Lamsa, Nat. Rev. Neurosci. 2007, 8(9), 687.

[11]

E. S. Fortune, G. J. Rose, Trends Neurosci. 2001, 24(7), 381.

[12]

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, D. S. Modha, Science 2014, 345(6179), 668.

[13]

J. Shi, S. D. Ha, Y. Zhou, F. Schoofs, S. Ramanathan, Nat. Commun. 2013, 4(1), 2676.

[14]

L. I. Zhang, H. W. Tao, C. E. Holt, W. A. Harris, M. Poo, Nature 1998, 395(6697), 37.

[15]

Z. Tan, R. Yang, K. Terabe, X. Yin, X. Zhang, X. Guo, Adv. Mater. 2016, 28(2), 377.

[16]

M. Patel, N. R. Hemanth, J. Gosai, R. Mohili, A. Solanki, M. Roy, B. Fang, N. K. Chaudhari, Trends Chem. 2022, 4(9), 835.

[17]

H. Wang, Q. Zhao, Z. Ni, Q. Li, H. Liu, Y. Yang, L. Wang, Y. Ran, Y. Guo, W. Hu, Y. Liu, Adv. Mater. 2018, 30(46), 1803961.

[18]

G. Zhou, Z. Ren, L. Wang, B. Sun, S. Duan, Q. Song, Mater. Horiz. 2019, 6(9), 1877.

[19]

K. Wang, S. Dai, Y. Zhao, Y. Wang, C. Liu, J. Huang, Small 2019, 15(11), 1900010.

[20]

I. Raifuku, Y. Chao, H. Chen, C. Lin, P. Lin, L. Shih, K. Chen, J. Chen, J. Chen, P. Chen, EcoMat 2021, 3(6), e12142.

[21]

H. L. Wells, Z. Anorg, Chem. 1893, 3(1), 195.

[22]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338(6107), 643.

[23]

J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala, R. H. Friend, H. Yang, T.-W. Lee, Adv. Mater. 2016, 28(34), 7550.

[24]

P. Ramasamy, D. Lim, B. Kim, S. Lee, M. Lee, J. Lee, Chem. Commun. 2016, 52(10), 2067.

[25]

L. Lei, Q. Dong, K. Gundogdu, F. So, Adv. Funct. Mater. 2021, 31(16), 2010144.

[26]

X. Guan, W. Hu, M. A. Haque, N. Wei, Z. Liu, A. Chen, T. Wu, Adv. Funct. Mater. 2018, 28(3), 1704665.

[27]

C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O’Regan, A. Walsh, M. Saiful Islam, Nat. Commun. 2015, 6(1), 7497.

[28]

G. Cao, C. Cheng, H. Zhang, H. Zhang, R. Chen, B. Huang, X. Yan, W. Pei, H. Chen, J. Semicond. 2020, 41(5), 051205.

[29]

Q. A. Akkerman, L. Manna, ACS Energy Lett. 2020, 5(2), 604.

[30]

R. H. Mitchell, M. D. Welch, A. R. Chakhmouradian, Mineral Mag 2017, 81(3), 411.

[31]

Alison Stoddart, Nat. Rev. Mater. 2018, 3(8), 226.

[32]

Y. Fang, S. Zhai, L. Chu, J. Zhong, ACS Appl. Mater. Interfaces 2021, 13(15), 17141.

[33]

M. M. Byranvand, W. Zuo, R. Imani, M. Pazoki, M. Saliba, Chem. Sci. 2022, 13(23), 6766.

[34]

J. Zhang, X. Song, L. Wang, W. Huang, Natl. Sci. Rev. 2022, 9(5), nwab129.

[35]

Y. Wang, L. Song, Y. Chen, W. Huang, Acs Photonics 2020, 7(1), 10.

[36]

I. M. Asuo, D. Gedamu, I. Ka, L. F. Gerlein, F.-X. Fortier, A. Pignolet, S. G. Cloutier, R. Nechache, Nano Energy 2018, 51, 324.

[37]

W. Deng, L. Huang, X. Xu, X. Zhang, X. Jin, S.-T. Lee, J. Jie, Nano Lett. 2017, 17(4), 2482.

[38]

Q. Liu, S. Gao, L. Xu, W. Yue, C. Zhang, H. Kan, Y. Li, G. Shen, Chem. Soc. Rev. 2022, 51(9), 3341.

[39]

D. Ma, K. Lin, Y. Dong, H. Choubisa, A. H. Proppe, D. Wu, Y.-K. Wang, B. Chen, P. Li, J. Z. Fan, F. Yuan, A. Johnston, Y. Liu, Y. Kang, Z.-H. Lu, Z. Wei, E. H. Sargent, Nature 2021, 599(7886), 594.

[40]

S. Wang, F. Yang, J. Zhu, Q.Y. CaoZhong, A. Wang, W. Du, X. Liu, Sci. China Mater. 2020, 63, 1438.

[41]

M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O. F. Mohammed, O. M. Bakr, Nat. Commun. 2015, 6(1), 7586.

[42]

D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Science 2015, 347(6221), 519.

[43]

S. Wang, F. Yang, J. Zhu, Q. Cao, Y. Zhong, A. Wang, W. Du, X. Liu, Sci. China Mater. 2020, 63, 1438.

[44]

Y. Tidhar, E. Edri, H. Weissman, D. Zohar, G. Hodes, D. Cahen, B. Rybtchinski, S. Kirmayer, J. Am. Chem. Soc. 2014, 136(38), 13249.

[45]

Y. Guo, X. Yin, J. Liu, W. Que, J. Mater. Chem. A 2019, 7(32), 19008.

[46]

J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Nat. Nanotechnol. 2014, 9(11), 927.

[47]

F. Huang, M. Li, P. Siffalovic, G. Cao, J. Tian, Energy Environ. Sci. 2019, 12(2), 518.

[48]

Y. Zhou, O. S. Game, S. Pang, N. P. Padture, J. Phys. Chem. Lett. 2015, 6(23), 4827.

[49]

A. R. Pascoe, Q. Gu, M. U. Rothmann, W. Li, Y. Zhang, A. D. Scully, X. Lin, L. Spiccia, U. Bach, Y.-B. Cheng, Sci. China Mater. 2017, 60(7), 617.

[50]

X. Cao, G. Zhang, L. Hao, X. Ding, T. Dong, X. Li, Q. Zeng, X. He, Y. Jia, J. Wei, J. Alloys Compd. 2022, 919, 165722.

[51]

K. Liang, D. B. Mitzi, M. T. Prikas, Chem. Mater. 1998, 10(1), 403.

[52]

M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501(7467), 395.

[53]

Z. Ni, Y. Zhu, S. Ju, Z. Xu, F. Tian, H. Hu, T. Guo, F. Li, IEEE Trans. Electron. Devices 2021, 68(9), 4425.

[54]

S. Sun, D. Yuan, Y. Xu, A. Wang, Z. Deng, ACS Nano 2016, 10(3), 3648.

[55]

S. T. Ha, X. Liu, Q. Zhang, D. Giovanni, T. C. Sum, Q. Xiong, Adv. Opt. Mater. 2014, 2(9), 838.

[56]

K. M. McCall, C. C. Stoumpos, O. Y. Kontsevoi, G. C. B. Alexander, B. W. Wessels, M. G. Kanatzidis, Chem. Mater. 2019, 31(7), 2644.

[57]

J. Chen, Z. Luo, Y. Fu, X. Wang, K. J. Czech, S. Shen, L. Guo, J. C. Wright, A. Pan, S. Jin, ACS Energy Lett. 2019, 4(5), 1045.

[58]

A. A. Petrov, N. Pellet, J.-Y. Seo, N. A. Belich, D. Yu. Kovalev, A. V. Shevelkov, E. A. Goodilin, S. M. Zakeeruddin, A. B. Tarasov, M. Graetzel, Chem. Mater. 2017, 29(2), 587.

[59]

C. Lin, C. Kang, T. Wu, C. Tsai, C. Sher, X. Guan, P. Lee, T. Wu, C. Ho, H. Kuo, J. He, Adv. Funct. Mater. 2020, 30(14), 1909275.

[60]

F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 2015, 9(4), 4533.

[61]

L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15(6), 3692.

[62]

D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie, M. V. Kovalenko, Nano Lett. 2016, 16(9), 5866.

[63]

G. B. Nair, S. Tamboli, R. E. Kroon, S. J. Dhoble, H. C. Swart, J. Alloys Compd. 2022, 928, 167249.

[64]

L. C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. M. Espallargas, H. J. Bolink, R. E. Galian, J. Pérez-Prieto, J. Am. Chem. Soc. 2014, 136(3), 850.

[65]

S.-Y. Lien, S.-Y. Liu, W.-R. Chen, C.-H. Liu, P.-W. Sze, N.-F. Wang, C.-J. Huang, Crystals 2022, 12(6), 799.

[66]

A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131(17), 6050.

[67]

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 2015, 347(6225), 967.

[68]

Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Nat. Commun. 2014, 5(1), 5784.

[69]

S. Heo, G. Seo, Y. Lee, D. Lee, M. Seol, J. Lee, J.-B. Park, K. Kim, D.-J. Yun, Y. S. Kim, J. K. Shin, T. K. Ahn, M. K. Nazeeruddin, Energy Environ. Sci. 2017, 10(5), 1128.

[70]

J. M. Ball, A. Petrozza, Nat. Energy 2016, 1(11), 16149.

[71]

Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, J. Huang, Energy Environ. Sci. 2016, 9(5), 1752.

[72]

B. Chen, M. Yang, S. Priya, K. Zhu, J. Phys. Chem. Lett. 2016, 7(5), 905.

[73]

C. Ran, J. Xu, W. Gao, C. Huang, S. Dou, Chem. Soc. Rev. 2018, 47(12), 4581.

[74]

B. Chen, P. N. Rudd, S. Yang, Y. Yuan, J. Huang, Chem. Soc. Rev. 2019, 48(14), 3842.

[75]

G. Wu, R. Liang, M. Ge, G. Sun, Y. Zhang, G. Xing, Adv. Mater. 2022, 34(8), 2105635.

[76]

G. Sadoughi, D. E. Starr, E. Handick, S. D. Stranks, M. Gorgoi, R. G. Wilks, M. Bär, H. J. Snaith, ACS Appl. Mater. Interfaces 2015, 7(24), 13440.

[77]

W. Zhang, S. Pathak, N. Sakai, T. Stergiopoulos, P. K. Nayak, N. K. Noel, A. A. Haghighirad, V. M. Burlakov, D. W. deQuilettes, A. Sadhanala, W. Li, L. Wang, D. S. Ginger, R. H. Friend, H. J. Snaith, Nat. Commun. 2015, 6(1), 10030.

[78]

X. Wu, M. T. Trinh, D. Niesner, H. Zhu, Z. Norman, J. S. Owen, O. Yaffe, B. J. Kudisch, X.-Y. Zhu, J. Am. Chem. Soc. 2015, 137(5), 2089.

[79]

R. Long, J. Liu, O. V. Prezhdo, J. Am. Chem. Soc. 2016, 138(11), 3884.

[80]

T. Han, S. Tan, J. Xue, L. Meng, J. Lee, Y. Yang, Adv. Mater. 2019, 31(47), 1803515.

[81]

W.-J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 2014, 104(6), 063903.

[82]

C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Acta Crystallogr., Sect. B: Struct. Sci. 2008, 64(6), 702.

[83]

C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli, M. Scheffler, Sci. Adv. 2019, 5(2), eaav0693.

[84]

C. C. Stoumpos, M. G. Kanatzidis, Acc. Chem. Res. 2015, 48(10), 2791.

[85]

E. J Juarez-Perez, L. K. Ono, M. Maeda, Y. Jiang, Z. Hawash, Y. Qi, J. Mater. Chem. A 2018, 6(20), 9604.

[86]

J. A. Steele, H. Jin, I. Dovgaliuk, R. F. Berger, T. Braeckevelt, H. Yuan, C. Martin, E. Solano, K. Lejaeghere, S. M. J. Rogge, C. Notebaert, W. Vandezande, K. P. F. Janssen, B. Goderis, E. Debroye, Y.-K. Wang, Y. Dong, D. Ma, M. Saidaminov, H. Tan, Z. Lu, V. Dyadkin, D. Chernyshov, V. Van Speybroeck, E. H. Sargent, J. Hofkens, M. B. J. Roeffaers, Science 2019, 365(6454), 679.

[87]

Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, K. Zhu, Chem. Mater. 2016, 28(1), 284.

[88]

J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 2014, 14(5), 2584.

[89]

A. M. A Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, P. R. F. Barnes, Chem. Mater. 2015, 27(9), 3397.

[90]

S. J. Lee, S. S. Shin, Y. C. Kim, D. Kim, T. K. Ahn, J. H. Noh, J. Seo, S. I. Seok, J. Am. Chem. Soc. 2016, 138(12), 3974.

[91]

T.-B. Song, T. Yokoyama, C. C. Stoumpos, J. L. Logsdon, D. H. Cao, M. R. Wasielewski, S. Aramaki, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139(2), 836.

[92]

X. Xu, C. C. Chueh, Z. Yang, A. Rajagopal, J. Xu, S. B. Jo, A. K. Y. Jen, Nano Energy 2017, 34(34), 392.

[93]

T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W. E. I. Sha, H. Zhu, Y. Yang, Sol. RRL 2020, 4(3), 1900467.

[94]

R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang, M. Wei, M. I Saidaminov, Y. Gao, J. Xu, M. Xiao, A. Li, J. Zhu, E. H. Sargent, H. Tan, Nat. Energy 2019, 4(10), 864.

[95]

L. O. Chua, S. M. Kang, Proc. IEEE 1976, 64(2), 209.

[96]

D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature 2008, 453(7191), 80.

[97]

Y. Ho, G. M. Huang, P. Li, In IEEE/ACM International Conference on Computer-Aided Design -Digest of Technical Papers, ACM 2009, p.485.

[98]

J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, R. S. Williams, Nature 2010, 464(7290), 873.

[99]

A. Thomas, J. Phys. D: Appl. Phys. 2013, 46(9), 093001.

[100]

P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, H. Qian, Nature 2020, 577(7792), 641.

[101]

X. Li, J. Tang, Q. Zhang, B. Gao, J. J. Yang, S. Song, W. Wu, W. Zhang, P. Yao, N. Deng, L. Deng, Y. Xie, H. Qian, H. Wu, Nat. Nanotechnol. 2020, 15(9), 776.

[102]

G. S. H Thien, M. A. M. Sarjidan, N. A. Talik, B. T. Goh, B. K. Yap, Z. He, K.-Y. Chan, Mater. Chem. Front. 2022, 6(21), 3125.

[103]

A. Solanki, A. Guerrero, Q. Zhang, J. Bisquert, T. C. Sum, J. Phys. Chem. Lett. 2020, 11(2), 463.

[104]

S. Poddar, Y. Zhang, L. Gu, D. Zhang, Q. Zhang, S. Yan, M. Kam, S. Zhang, Z. Song, W. Hu, L. Liao, Z. Fan, Nano Lett. 2021, 21(12), 5036.

[105]

M. Zhao, B. Gao, J. Tang, H. Qian, H. Wu, Appl. Phys. Rev. 2020, 7(1), 011301.

[106]

K. J. Kwak, D. E. Lee, S. J. Kim, H. W. Jang, J. Phys. Chem. Lett. 2021, 12(37), 8999.

[107]

Z. Xue, Y. Xu, C. Jin, Y. Liang, Z. Cai, J. Sun, Nanoscale 2023, 15, 4653.

[108]

Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Nat. Mater. 2015, 14(2), 193.

[109]

C. Gu, J.-S. Lee, ACS Nano 2016, 10(5), 5413.

[110]

S. Meloni, T. Moehl, W. Tress, M. Franckevičius, M. Saliba, Y. H. Lee, P Gao, M. K. Nazeeruddin, S. M. Zakeeruddin, U. Rothlisberger, M. Graetzel, Nat. Commun. 2016, 7(1), 10334.

[111]

S. Ham, S. Choi, H. Cho, S.-I. Na, G. Wang, Adv. Funct. Mater. 2019, 29(5), 1806646.

[112]

A. Pfau, K. D. Schierbaum, Surf. Sci. 1994, 321(1–2), 71.

[113]

K. D. Cantley, A. Subramaniam, H. J. Stiegler, R. A. Chapman, E. M. Vogel, IEEE Trans. Neural Netw. Learn. Syst. 2012, 23(4), 565.

[114]

K. Yan, M. Peng, X. Yu, X. Cai, S. Chen, H. Hu, B. Chen, X. Gao, B. Dong, D. Zou, J. Mater. Chem. C 2016, 4(7), 1375.

[115]

Y. Sun, M. Tai, C. Song, Z. Wang, J. Yin, F. Li, H. Wu, F. Zeng, H. Lin, F. Pan, J. Phys. Chem. C 2018, 122(11), 6431.

[116]

F. Zhou, Y. Liu, X. Shen, M. Wang, F. Yuan, Y. Chai, Adv. Funct. Mater. 2018, 28(15), 1800080.

[117]

S. Wang, X. Dong, Y. Xiong, J. Sha, Y. Cao, Y. Wu, W. Li, Y. Yin, Y. Wang, Adv. Electron. Mater. 2021, 7(5), 2100014.

[118]

H. Ma, W. Wang, H. Xu, Z. Wang, Y. Tao, P. Chen, W. Liu, X. Zhang, J. Ma, Y. Liu, Acs Appl. Mater. Interfaces 2018, 10(25), 21755.

[119]

K. Sun, Q. Wang, L. Zhou, J. Wang, J. Chang, R. Guo, B. K. Tay, X. Yan, Sci China Mater 2023, 66, 2013.

[120]

X. Cheng, W. Qian, J. Wang, C. Yu, J. He, H. Li, Q. Xu, D. Chen, N. Li, J. Lu, Small 2019, 15(49), 1905731.

[121]

Z. Liu, P. Cheng, Y. Li, R. Kang, J. Zhou, J. Zhao, Z. Zuo, Mater. Chem. Phys. 2022, 288, 126393.

[122]

G. Lin, Y. Lin, R. Cui, H. Huang, X. Guo, C. Li, J. Dong, X. Guo, B. Sun, J. Mater. Chem. C 2015, 3(41), 10793.

[123]

D. Hao, J. Zhang, S. Dai, J. Zhang, J. Huang, ACS Appl. Mater. Interfaces 2020, 12(35), 39487.

[124]

C. Mead, Proc. IEEE 1990, 78(10), 1629.

[125]

W. Xu, H. Cho, Y. Kim, Y. Kim, C. Wolf, C. Park, T. Lee, Adv. Mater. 2016, 28(28), 5916.

[126]

Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou, L. Zhou, X. Chen, S.-T. Han, Adv. Mater. 2018, 30(38), 1802883.

[127]

F. Zeng, Y. Guo, W. Hu, Y. Tan, X. Zhang, J. Feng, X. Tang, ACS Appl. Mater. Interfaces 2020, 12(20), 23094.

[128]

X. Yang, Z. Xiong, Y. Chen, Y. Ren, L. Zhou, H. Li, Y. Zhou, F. Pan, S. Han, Nano Energy 2020, 78, 105246.

[129]

Y. Gao, S. F Al-Sarawi, D. Abbott, Nat. Electron. 2020, 3(2), 81.

[130]

U. Rührmair, S. Devadas, F. Koushanfar, In Introduction to Hardware Security and Trust (M. Tehranipoor, C. Wang, Eds.), Springer 2012.

[131]

C. Herder, M.-D. Yu, F. Koushanfar, S. Devadas, Proc. IEEE 2014, 102(8), 1126.

[132]

R. A. John, N. Shah, S. K. Vishwanath, S. E. Ng, B. Febriansyah, M. Japadeeswararao, C.-H. Chang, A. Basu, N. Mathews, Nat. Commun. 2021, 12(1), 3681.

RIGHTS & PERMISSIONS

2024 The Author(s). FlexMat published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Posts & Telecommunications.

AI Summary AI Mindmap
PDF (5877KB)

311

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/