Implementation of high-performance, freestanding flexible film masks through photosensitive polyimide for arbitrary surface micropatterns creation

Xuan Dong , Siew Yin Chan , Ruoqing Zhao , Lei Luo , Manzhang Xu , Jiuwei Gao , Xin Ju , Jing Wu , Dongzhi Chi , Xian Jun Loh , Xuewen Wang

FlexMat ›› 2024, Vol. 1 ›› Issue (2) : 203 -215.

PDF (3140KB)
FlexMat ›› 2024, Vol. 1 ›› Issue (2) : 203 -215. DOI: 10.1002/flm2.18
ARTICLE

Implementation of high-performance, freestanding flexible film masks through photosensitive polyimide for arbitrary surface micropatterns creation

Author information +
History +
PDF (3140KB)

Abstract

Given the widespread presence of intricate surfaces, the development of electronics has generated a significant demand for surface patterning techniques capable of creating refined or novel patterns. Nevertheless, present surface patterning techniques suffer from complex processes, limited resolution, stringent conditions, and high manufacturing costs. Herein, we present a novel approach for arbitrary surface micropatterning using photosensitive polyimide (PSPI), enabling the in situ fabrication of electrodes without the need for a pattern-transferring process. On this basis, we have implemented a high-performance, freestanding flexible thin-film mask with high optical transparency that facilitates precise alignment of microelectrode patterns with the target material. It also exhibits exceptional mechanical properties suitable for long-term use and high-temperature applications, with a notable glass transition temperature of up to 300°C. The fabricated masks with thicknesses of 5–20 µm are well-suited for high-resolution applications, including those requiring sub-5 µm resolution. Furthermore, the creation of microelectrodes on a variety of surfaces utilizing the fabricated PSPI masks was successfully demonstrated. Our facile method provides a solid foundation for achieving efficient micropatterning for the fabrication of high-performance flexible electronics on complex surfaces.

Keywords

flexible electronics / freestanding flexible film / micropatterning / photosensitive polyimide / shadow masks

Cite this article

Download citation ▾
Xuan Dong, Siew Yin Chan, Ruoqing Zhao, Lei Luo, Manzhang Xu, Jiuwei Gao, Xin Ju, Jing Wu, Dongzhi Chi, Xian Jun Loh, Xuewen Wang. Implementation of high-performance, freestanding flexible film masks through photosensitive polyimide for arbitrary surface micropatterns creation. FlexMat, 2024, 1(2): 203-215 DOI:10.1002/flm2.18

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. del Barrio, C. Sánchez-Somolinos, Adv. Opt. Mater. 2019, 7(16), 1900598.

[2]

G. Zabow, Science 2022, 378, 894.

[3]

J. Yin, S. Wang, A. Di Carlo, A. Chang, X. Wan, J. Xu, X. Xiao, J. Chen, Med-X. 2023, 1, 3.

[4]

A. Libanori, G. Chen, X. Zhao, Y. Zhou, J. Chen, Nat. Electron. 2022, 5, 142.

[5]

X. Zhao, Y. Zhou, J. Xu, G. Chen, Y. Fang, T. Tat, X. Xiao, Y. Song, S. Li, J. Chen, Nat. Commun. 2021, 12(1), 6755.

[6]

G. Chen, X. Xiao, X. Zhao, T. Tat, M. Bick, J. Chen, Chem. Rev. 2021, 122, 3259.

[7]

Y. Zhou, X. Zhao, J. Xu, Y. Fang, G. Chen, Y. Song, S. Li, J. Chen, Nat. Mater. 2021, 20, 1670.

[8]

J. Yin, S. Wang, T. Tat, J. Chen, Nat. Rev. Bioeng. 2024, 1.

[9]

H. Li, Z. Wang, Y. Cao, Y. Chen, X. Feng, ACS Appl. Mater. Interfaces. 2020, 13, 1612.

[10]

Y. Yoshida, H. Wada, K. Izumi, S. Tokito, Jpn J. Appl. Phys. 2017, 56, 05EA01.

[11]

J. J. Adams, E. B. Duoss, T. F. Malkowski, M. J. Motala, B. Y. Ahn, R. G. Nuzzo, J. T. Bernhard, J. A. Lewis, Adv. Mater. 2011, 23, 1335.

[12]

Q. Wang, M. Tahir, J. Zang, X. Zhao, Adv. Mater. 2012, 24, 1947.

[13]

K. E. Paul, M. Prentiss, G. M. Whitesides, Adv. Funct. Mater. 2003, 13, 259.

[14]

L. Wong, J. D. Pegan, B. Gabela-Zuniga, M. Khine, K. E. McCloskey, Biofabrication 2017, 9, 021001.

[15]

H. G. Craighead, Science 2000, 290, 1532.

[16]

M. M. H Shandhi, M. Leber, A. L. Hogan, D. J. Warren, R. Bhandari, S. Negi, Off. Syst. 2017, 26, 376.

[17]

W. Shang, G. Q. Gu, F. Yang, L. Zhao, G. Cheng, Z.-l. Du, Z. L. Wang ACS Nano. 2017, 11, 8796.

[18]

I.-Y. Chung, J.-D. Kim, K.-H. Kang, Int. J. Precis Eng. Manuf. 2009, 10, 11.

[19]

H. Gnanasambanthan, D. Maji, IEEE 7th International Conference for Convergence in Technology (I2CT), IEEE 2022.

[20]

W. J. Hyun, E. B. Secor, M. C. Hersam, C. D. Frisbie, L. F. Francis, Adv. Mater. 2015, 27, 109.

[21]

S. Xie, V. Savu, W. Tang, O. Vazquez-Mena, K. Sidler, H. Zhang, J. Brugger, Microelectron Eng. 2011, 88, 2790.

[22]

K. Sidler, L. G. Villanueva, O. Vazquez-Mena, V. Savu, J. Brugger, Nanoscale 2012, 4, 773.

[23]

A. Folch, B. H. Jo, O. Hurtado, D. J. Beebe, M. Toner, J. Biomed. Mater. Res. 2000, 52, 346.

[24]

P. Jothimuthu, A. Carroll, A. A. S. Bhagat, G. Lin, J. E. Mark, I. Papautsky, J. Micromech. Microeng. 2009, 19(4), 045024.

[25]

J. H. Choi, H. Lee, H. K. Jin, J.-S. Bae, G. M. Kim, Lab Chip 2012, 12, 5045.

[26]

J. H. Choi, G. M. Kim, Int. J. Precis Eng. Manuf. 2011, 12, 165.

[27]

J. N. Lee, X. Jiang, D. Ryan, G. M. Whitesides, Langmuir 2004, 20, 11684.

[28]

T. Wang, Y. Xi, M. Hu, B. Yang, W. Liu, J. Liu, Off. Syst. 2018, 27, 698.

[29]

D. Lee, S. Yang, ACS Appl. Mater. Interfaces. 2013, 5, 2658.

[30]

S. Jinno, H. C. Moeller, C. L. Chen, B. Rajalingam, B. G. Chung, M. R. Dokmeci, A. Khademhosseini, J. Biomed. Mater Res., Part A 2008, 86, 278.

[31]

S. Selvarasah, S. Chao, C.-L. Chen, S. Sridhar, A. Busnaina, A. Khademhosseini, M. Dokmeci, Sens. Actuators, A A. 2008, 145, 306.

[32]

D. Martinez, C. Py, M. Denhoff, R. Monette, T. Comas, A. Krantis, G. Mealing, Biotechnol. Bioeng. 2013, 110, 2236.

[33]

Y. Kajiyama, K. Joseph, K. Kajiyama, S. Kudo, H. Aziz, Appl. Phys. Lett. 2014, 104, 26.

[34]

D. Ornoff, Y. Wang, N. Allbritton, J. Micromech. Microeng. 2012, 23, 025009.

[35]

J. Choi, A. Roychowdhury, N. Kim, D. E. Nikitopoulos, W. Lee, H. Han, S. Park, J. Micromech. Microeng. 2010, 20, 085011.

[36]

G. Kim, B. Kim, J. Brugger, Sens Actuators, A 2003, 107, 132.136.

[37]

T. Wang, M. Hu, B. Yang, X. Wang, J.-Q. Liu, IEEE Micro Electro Mechanical Systems (MEMS), IEEE 2018.

[38]

Y. S. Negi, S. R. Damkale, S. Ansari, J. Macromol. Sci., Polym. Rev. 2001, 41, 119.

[39]

M. Yoshida, T. Hirata, M. Fujita, N. Anzai, N. Tamura, J. Photopolym, Sci. Technol. 2014, 27, 207.

[40]

M. Tomikawa, R. Okuda, H. Ohnishi, J. Photopolym, Sci. Technol. 2015, 28, 73.

[41]

D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, Science 2011, 333, 838.

[42]

L. Tian, Y. Li, R. C. Webb, S. Krishnan, Z. Bian, J. Song, X. Ning, K. Crawford, J. Kurniawan, A. Bonifas, Adv. Funct. Mater. 2017, 27, 1701282.

[43]

R. Rubner, A Photopolymer. The Direct Way to Polyimide Patterns 1979.

[44]

H. Wang, A. Chakraborty, C. Luo, J. Micromech. Microeng. 2010, 20, 127001.

[45]

K. Masamba, Y. Li, J. Hategekimana, F. Liu, J. Ma, F. Zhong, J. Food Sci. Technol. 2016, 53, 2227.

[46]

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, P. Schiavone, Microelectron. Eng. 2008, 85, 1289.

[47]

D. Wright, B. Rajalingam, J. M. Karp, S. Selvarasah, Y. Ling, J. Yeh, R. Langer, M. R. Dokmeci, A. Khademhosseini, J. Biomed. Mater. Res., Part A 2008, 85, 530.

[48]

J. Gao, L. Guan, J. Chu, Sixth International Symposium on Precision Engineering Measurements and Instrumentation, SPIE 2010.

[49]

J. D. Russell, J. L. Kardos, Polym. Compos. 1997, 18, 595.

[50]

S. K. Mitra, S. Chakraborty, Microfluidics and Nanofluidics Handbook: Fabrication, Implementation, and Applications, Taylor and Francis 2012.

[51]

H.-S. Noh, K.-S. Moon, A. Cannon, P. J. Hesketh, C. Wong, J. Micromech. Microeng. 2004, 14, 625.

[52]

X. Liao, Q. Liao, X. Yan, Q. Liang, H. Si, M. Li, H. Wu, S. Cao, Y. Zhang, Adv. Funct. Mater. 2015, 25, 2395.

[53]

F. Li, T. Shen, L. Xu, C. Hu, J. Qi, Adv. Electron Mater. 2019, 5, 1900803.

RIGHTS & PERMISSIONS

2024 The Author(s). FlexMat published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Posts & Telecommunications.

AI Summary AI Mindmap
PDF (3140KB)

223

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/