Self-doped conjugated polymers with electron-deficient quinone units for enhanced electron transport in highly efficient organic solar cells

Xi Luo , Jiangkai Yu , Haoran Tang , Houji Cai , Wei Xiong , Kai Zhang , Fei Huang , Yong Cao

FlexMat ›› 2024, Vol. 1 ›› Issue (2) : 105 -115.

PDF (2601KB)
FlexMat ›› 2024, Vol. 1 ›› Issue (2) : 105 -115. DOI: 10.1002/flm2.17
ARTICLE

Self-doped conjugated polymers with electron-deficient quinone units for enhanced electron transport in highly efficient organic solar cells

Author information +
History +
PDF (2601KB)

Abstract

Organic solar cells (OSCs) have attracted significant attention as a burgeoning flexible technology, owing to their advanced power conversion efficiencies. Moreover, interface materials play a crucial role in optimizing energy level alignment between the active layer and electrodes, thereby enhancing carrier extraction within the device and improving efficiency. However, current methodologies for fabricating electron-transport materials with superior mobility are still limited compared with those for hole-transport materials. In this study, a benzodifurandione (BFDO)-derived building block with quinone resonance property and strong electron-withdrawing capability was synthesized. Two conjugated polymers, namely PBFDO-F6N and PBFDO-F6N-Br, were prepared, both of which exhibited good electron mobility and exceptional interface modification capabilities. A comprehensive investigation of the interaction between the interface layer and the active layer revealed that PBFDO-F6N induced doping at the acceptor interface. Additionally, the high mobility of PBFDO-F6N facilitated efficient carrier extraction at the interface. Consequently, the application of PBFDO-F6N as the cathode interface layer for PM6:BTP-eC9-based OSC devices resulted in a remarkable efficiency of 18.11%. Moreover, the device efficiency remained at ~96% even at a PBFDO-F6N interface thickness of 50 nm, demonstrating the great potential of this material for large-scale device preparation.

Keywords

electron transport materials / organic solar cells / quinone structure / self n-doping

Cite this article

Download citation ▾
Xi Luo, Jiangkai Yu, Haoran Tang, Houji Cai, Wei Xiong, Kai Zhang, Fei Huang, Yong Cao. Self-doped conjugated polymers with electron-deficient quinone units for enhanced electron transport in highly efficient organic solar cells. FlexMat, 2024, 1(2): 105-115 DOI:10.1002/flm2.17

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Sun, M. Chang, L. Meng, X. Wan, H. Gao, Y. Zhang, K. Zhao, Z. Sun, C. Li, S. Liu, H. Wang, J. Liang, Y. Chen, Nat. Electron 2019, 2, 513.

[2]

F. Qi, Y. Li, R. Zhang, F. R. Lin, K. Liu, Q. Fan, A. K. Y. Jen, Angew. Chem. Int. Ed. 2023, 62, e202303066.

[3]

Y. Hu, J. Wang, C. Yan, P. Cheng, Nat. Rev. Mater. 2022, 7, 836.

[4]

X. Zheng, L. Zuo, F. Zhao, Y. Li, T. Chen, S. Shan, K. Yan, Y. Pan, B. Xu, C.-Z. Li, M. Shi, J. Hou, H. Chen, Adv. Mater. 2022, 34, 2200044.

[5]

J. Wang, Y. Cui, Y. Xu, K. Xian, P. Bi, Z. Chen, K. Zhou, L. Ma, T. Zhang, Y. Yang, Y. Zu, H. Yao, X. Hao, L. Ye, J. Hou, Adv. Mater. 2022, 34, 2205009.

[6]

L. Xie, J. Zhang, W. Song, J. Ge, D. Li, R. Zhou, J. Zhang, X. Zhang, D. Yang, B. Tang, T. Wu, Z. Ge, Nano Energy 2022, 99, 107414.

[7]

X. Liu, Z. Zheng, J. Wang, Y. Wang, B. Xu, S. Zhang, J. Hou, X. Hou, Adv. Mater. 2022, 34, 2106453.

[8]

L. Ma, Y. Cui, J. Zhang, K. Xian, Z. Chen, K. Zhou, T. Zhang, W. Wang, H. Yao, S. Zhang, X. Hao, L. Ye, J. Hou, Adv. Mater. 2023, 35, 2208926.

[9]

X. Duan, W. Song, J. Qiao, X. Li, Y. Cai, H. Wu, J. Zhang, X. Hao, Z. Tang, Z. Ge, F. Huang, Y. Sun, Energy Environ. Sci. 2022, 15, 1563.

[10]

C. Xie, Y. Liu, W. Wei, Y. Zhou, Adv. Funct. Mater. 2023, 33, 2210675.

[11]

J. Fu, P. W. K. Fong, H. Liu, C.-S. Huang, X. Lu, S. Lu, M. Abdelsamie, T. Kodalle, C. M Sutter-Fella, Y. Yang, G. Li, Nat. Commun. 2023, 14, 1760.

[12]

Y. Cui, Y. Xu, H. Yao, P. Bi, L. Hong, J. Zhang, Y. Zu, T. Zhang, J. Qin, J. Ren, Z. Chen, C. He, X. Hao, Z. Wei, J. Hou, Adv. Mater. 2021, 33, 2102420.

[13]

Y. Wei, Z. Chen, G. Lu, N. Yu, C. Li, J. Gao, X. Gu, X. Hao, G. Lu, Z. Tang, J. Zhang, Z. Wei, X. Zhang, H. Huang, Adv. Mater. 2022, 34, 2204718.

[14]

T. Chen, S. Li, Y. Li, Z. Chen, H. Wu, Y. Lin, Y. Gao, M. Wang, G. Ding, J. Min, Z. Ma, H. Zhu, L. Zuo, H. Chen, Adv. Mater. 2023, 35, 2300400.

[15]

J. Wang, Y. Wang, P. Bi, Z. Chen, J. Qiao, J. Li, W. Wang, Z. Zheng, S. Zhang, X. Hao, J. Hou, Adv. Mater. 2023, 35, 2301583.

[16]

L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, Z. Zhou, R. Zeng, H. Zhu, C. C. Chen, R. C. I. MacKenzie, Y. Zou, J. Nelson, Y. Zhang, Y. Sun, F. Liu, Nat. Mater. 2022, 21, 656.

[17]

K. Jiang, J. Zhang, C. Zhong, F. R. Lin, F. Qi, Q. Li, Z. Peng, W. Kaminsky, S. H. Jang, J. Yu, X. Deng, H. Hu, D. Shen, F. Gao, H. Ade, M. Xiao, C. Zhang, A. K. Y. Jen, Nat. Energy 2022, 7, 1076.

[18]

K. Chong, X. Xu, H. Meng, J. Xue, L. Yu, W. Ma, Q. Peng, Adv. Mater. 2022, 34, 2109516.

[19]

G. Ding, T. Chen, M. Wang, X. Xia, C. He, X. Zheng, Y. Li, D. Zhou, X. Lu, L. Zuo, Z. Xu, H. Chen, Nano-Micro Lett. 2023, 15, 92.

[20]

B. Pang, C. Liao, X. Xu, L. Yu, R. Li, Q. Peng, Adv. Mater. 2023, 35, 2300631.

[21]

W. Lan, J. Gu, S. Wu, Y. Peng, M. Zhao, Y. Liao, T. Xu, B. Wei, L. Ding, F. Zhu, EcoMat 2021, 3, e12134.

[22]

Y. Lin, Y. Firdaus, F. H. Isikgor, M. I. Nugraha, E. Yengel, G. T. Harrison, R. Hallani, A. El-Labban, H. Faber, C. Ma, X. Zheng, A. Subbiah, C. T. Howells, O. M. Bakr, I. McCulloch, S. D. Wolf, L. Tsetseris, T. D. Anthopoulos, ACS Energy Lett. 2020, 5, 2935.

[23]

Y. Tao, D. Wang, X. He, H. Chen, C. Z. Li, J. Mater. Chem. A 2023, 11, 26277.

[24]

H. Tang, Y. Bai, H. Zhao, X. Qin, Z. Hu, C. Zhou, F. Huang, Y. Cao, Adv. Mater. 2024, 36, 2212236.

[25]

X. Y. Y Cao, C. Liu, F. Huang, Acta Polym. Sin. 2022, 53, 307.

[26]

H. T. Nicolai, M. Kuik, G. A. H. Wetzelaer, B. de Boer, C. Campbell, C. Risko, J. L. Brédas, P. W. M. Blom, Nat. Mater. 2012, 11, 882.

[27]

Y. Zhang, B. de Boer, P. W. M. Blom, Phys. Rev. B 2010, 81, 085201.

[28]

C. He, Q. He, Y. He, Y. Li, F. Bai, C. Yang, Y. Ding, L. Wang, J. Ye, Sol. Energy Mater. Sol. Cells 2006, 90, 1815.

[29]

V. D. Mihailetchi, L. J. A. Koster, P. W. M. Blom, Appl. Phys. Lett. 2004, 85, 970.

[30]

M. O. Reese, M. S. White, G. Rumbles, D. S. Ginley, S. E. Shaheen, Appl. Phys. Lett. 2008, 92, 053307.

[31]

F. Huang, L. Hou, H. Wu, X. Wang, H. Shen, W. Cao, W. Yang, Y. Cao, J. Am. Chem. Soc. 2004, 126, 9845.

[32]

Y. Lin, Y. Zhang, A. Magomedov, E. Gkogkosi, J. Zhang, X. Zheng, A. El-Labban, S. Barlow, V. Getautis, E. Wang, L. Tsetseris, S. R. Marder, I. McCulloch, T. D. Anthopoulos, Mater. Horiz. 2023, 10, 1292.

[33]

L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, Y. Chen, Science 2018, 361, 1094.

[34]

T. R. Andersen, H. F. Dam, M. Hösel, M. Helgesen, J. E. Carlé, T. T Larsen-Olsen, S. A. Gevorgyan, J. W. Andreasen, J. Adams, N. Li, F. Machui, G. D. Spyropoulos, T. Ameri, N. Lemaître, M. Legros, A. Scheel, D. Gaiser, K. Kreul, S. Berny, O. R. Lozman, S. Nordman, M. Välimäki, M. Vilkman, R. R. Søndergaard, M. Jørgensen, C. J. Brabec, F. C. Krebs, Energy Environ. Sci. 2014, 7, 2925.

[35]

Z. Zheng, Q. Hu, S. Zhang, D. Zhang, J. Wang, S. Xie, R. Wang, Y. Qin, W. Li, L. Hong, N. Liang, F. Liu, Y. Zhang, Z. Wei, Z. Tang, T. P. Russell, J. Hou, H. Zhou, Adv. Mater. 2018, 30, 1801801.

[36]

J. Wang, Z. Zheng, Y. Zu, Y. Wang, X. Liu, S. Zhang, M. Zhang, J. Hou, Adv. Mater. 2021, 33, 2102787.

[37]

C. He, C. Zhong, H. Wu, R. Yang, W. Yang, F. Huang, G. C. Bazan, Y. Cao, J. Mater. Chem. 2010, 20, 2617.

[38]

Z. He, C. Zhang, X. Xu, L. Zhang, L. Huang, J. Chen, H. Wu, Y. Cao, Adv. Mater. 2011, 23, 3086.

[39]

L. Hu, F. Wu, C. Li, A. Hu, X. Hu, Y. Zhang, L. Chen, Y. Chen, Macromolecules 2015, 48, 5578.

[40]

X. Jin, Y. Wang, X. Cheng, H. Zhou, L. Hu, Y. Zhou, L. Chen, Y. Chen, J. Mater. Chem. A 2018, 6, 423.

[41]

Y. Tan, L. Chen, F. Wu, B. Huang, Z. Liao, Z. Yu, L. Hu, Y. Zhou, Y. Chen, Macromolecules 2018, 51, 8197.

[42]

Z. Wu, C. Sun, S. Dong, X.-F. Jiang, S. Wu, H. Wu, H. L. Yip, F. Huang, Y. Cao, J. Am. Chem. Soc. 2016, 138, 2004.

[43]

A. Sharma, S. Singh, X. Song, D. Rosas Villalva, J. Troughton, D. Corzo, L. Toppare, G. Gunbas, B. C. Schroeder, D. Baran, Chem. Mater. 2021, 33, 8602.

[44]

Y. Liu, Z. A. Page, T. P. Russell, T. Emrick, Angew. Chem. Int. Ed. 2015, 54, 11485.

[45]

L. Yang, S. Shen, X. Chen, H. Wei, D. Xia, C. Zhao, N. Zhang, Y. Hu, W. Li, H. Xin, J. Song, Adv. Funct. Mater. 2023, 33, 2303603.

[46]

Y. Qiao, Y. Guo, C. Yu, F. Zhang, W. Xu, Y. Liu, D. Zhu, J. Am. Chem. Soc. 2012, 134, 4084.

[47]

T. Du, Y. Liu, C. Wang, Y. Deng, Y. Geng, Macromolecules 2022, 55, 5975.

[48]

Y. Deng, B. Sun, Y. He, J. Quinn, C. Guo, Y. Li, Angew. Chem. Int. Ed. 2016, 55, 3459.

[49]

T. Du, R. Gao, Y. Deng, C. Wang, Q. Zhou, Y. Geng, Angew. Chem. Int. Ed. 2020, 59, 221.

[50]

J. Chen, W. Zhang, L. Wang, G. Yu, Adv. Mater. 2023, 35, 2210772.

[51]

J. L. Brédas, J. Chem. Phys 1985, 82, 3808.

[52]

W. Rüttinger, G. C. Dismukes, Chem. Rev. 1997, 97, 1.

[53]

J. L. Brédas, B. Thémans, J. G. Fripiat, J. M. André, R. R. Chance, Phys. Rev. B 1984, 29, 6761.

[54]

H. Tang, Z. Liu, Y. Tang, Z. Du, Y. Liang, Z. Hu, K. Zhang, F. Huang, Y. Cao, Giant 2021, 6, 100053.

[55]

H. Hwang, Y. Kim, M. Kang, M.-H. Lee, Y. J. Heo, D.-Y. Kim, Polym. Chem. 2017, 8, 361.

[56]

H. Hwang, D. Khim, J.-M. Yun, E. Jung, S. Y. Jang, Y. H. Jang, Y. Y. Noh, D. Y. Kim, Adv. Funct. Mater. 2015, 25, 1146.

[57]

Y. Lu, Z. D. Yu, R. Z. Zhang, Z. F. Yao, H. Y. You, L. Jiang, H. I. Un, B.-W. Dong, M. Xiong, J. Y. Wang, J. Pei, Angew. Chem. Int. Ed. 2019, 58, 11390.

[58]

Z. D. Yu, Y. Lu, Z. Y. Wang, H.-I. Un, S. J. Zelewski, Y. Cui, H. Y. You, Y. Liu, K.-F. Xie, Z. F. Yao, Y. C. He, J. Y. Wang, W. B. Hu, H. Sirringhaus, J. Pei, Sci. Adv. 2023, 9, eadf3495.

[59]

C. Y. Yang, W. L. Jin, J. Wang, Y.-F. Ding, S. Nong, K. Shi, Y. Lu, Y. Z. Dai, F. D. Zhuang, T. Lei, C. A. Di, D. Zhu, J. Y. Wang, J. Pei, Adv. Mater. 2018, 30, 1802850.

[60]

Y. Q. Zheng, T. Lei, J. H. Dou, X. Xia, J. Y. Wang, C. J. Liu, J. Pei, Adv. Mater. 2016, 28, 7213.

[61]

Y. Z. Dai, N. Ai, Y. Lu, Y. Q. Zheng, J. H. Dou, K. Shi, T. Lei, J. Y. Wang, J. Pei, Chem. Sci. 2016, 7, 5753.

[62]

Z. F. Yao, H. T. Wu, F. D. Zhuang, P. F. Zhang, Q. Y. Li, J. Y. Wang, J. Pei, Small 2024, 20, 2306010.

[63]

Y. Lu, Z. D. Yu, H.-I. Un, Z.-F. Yao, H. Y. You, W. Jin, L. Li, Z. Y. Wang, B. W. Dong, S. Barlow, E. Longhi, C. A. Di, D. Zhu, J. Y. Wang, C. Silva, S. R. Marder, J. Pei, Adv. Mater. 2021, 33, 2005946.

[64]

H. Tang, Y. Liang, C. Liu, Z. Hu, Y. Deng, H. Guo, Z. Yu, A. Song, H. Zhao, D. Zhao, Y. Zhang, X. Guo, J. Pei, Y. Ma, Y. Cao, F. Huang, Nature 2022, 611, 271.

[65]

H. Tang, Y. Dou, R. Tan, Z. Chen, C. Liu, K. Zhang, J. Zhang, F. Huang, Y. Cao, Polym. J. 2023, 55, 517.

[66]

H. Zhao, Y. Dou, S. Chen, H. Tang, Y. Bai, R. Tan, K. Zhang, C. Liu, F. Huang, Chem. Mater. 2023, 35, 8695.

[67]

Z. F. Yao, H.-Y. Liu, Z. Y. Wang, Z.-K. Zhou, J. Y. Wang, J. Pei, Chem-Asian J 2019, 14, 1686.

[68]

J. H. Dou, Y. Q. Zheng, Z.-F. Yao, T. Lei, X. Shen, X. Y. Luo, Z. A. Yu, S. D. Zhang, G. Han, Z. Wang, Y. Yi, J. Y. Wang, J. Pei, Adv. Mater. 2015, 27, 8051.

[69]

M. B. Smith, March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, John Wiley & Sons, 2020.

[70]

Z. Chen, Z. Hu, Z. Wu, X. Liu, Y. Jin, M. Xiao, F. Huang, Y. Cao, J. Mater. Chem. A 2017, 5, 19447.

[71]

K. Yang, X. Zhang, A. Harbuzaru, L. Wang, Y. Wang, C. Koh, H. Guo, Y. Shi, J. Chen, H. Sun, K. Feng, M. C. Ruiz Delgado, H. Y. Woo, R. P. Ortiz, X. Guo, J. Am. Chem. Soc. 2020, 142, 4329.

[72]

D. X. Cao, D. Leifert, V. V. Brus, M. S. Wong, H. Phan, B. Yurash, N. Koch, G. C. Bazan, T. Q. Nguyen, Mater. Chem. Front. 2020, 4, 3556.

[73]

J. W. Jo, J. W. Jung, S. Bae, M. J. Ko, H. Kim, W. H. Jo, A. K. Y. Jen, H. J. Son, Adv. Mater. Interfaces 2016, 3, 1500703.

[74]

C. Feng, X. Wang, Z. He, Y. Cao, Sol. RRL 2021, 5, 2000753.

[75]

G. Xu, L. Gao, H. Xu, L. Huang, Y. Xie, X. Cheng, Y. Li, L. Chen, Y. Chen, J. Mater. Chem. A 2017, 5, 13807.

[76]

Q. Kang, Q. Wang, C. An, C. He, B. Xu, J. Hou, J. Energy Chem. 2020, 43, 40.

[77]

A. K. K Kyaw, D. H. Wang, V. Gupta, W. L. Leong, L. Ke, G. C. Bazan, A. J. Heeger, ACS Nano 2013, 7, 4569.

[78]

Y. Qin, M. A. Uddin, Y. Chen, B. Jang, K. Zhao, Z. Zheng, R. Yu, T. J. Shin, H. Y. Woo, J. Hou, Adv. Mater. 2016, 28, 9416.

[79]

A. Azeez, K. S. Narayan, Appl. Phys. Lett. 2020, 117, 043302.

[80]

G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Org. Electron. 2008, 9, 847.

[81]

H. Meng, C. Liao, M. Deng, X. Xu, L. Yu, Q. Peng, Angew. Chem. Int. Ed. 2021, 60, 22554.

RIGHTS & PERMISSIONS

2024 The Author(s). FlexMat published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Posts & Telecommunications.

AI Summary AI Mindmap
PDF (2601KB)

221

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/