Evolving photonic authentication with sustainable luminescent smart e-tags

Lília M. S. Dias, Lianshe Fu, R. F. P. Pereira, Albano N. Carneiro Neto, V. de Zea Bermudez, P. S. André, Rute A. S. Ferreira

FlexMat ›› 2024, Vol. 1 ›› Issue (2) : 116-126.

PDF
FlexMat ›› 2024, Vol. 1 ›› Issue (2) : 116-126. DOI: 10.1002/flm2.16
ARTICLE

Evolving photonic authentication with sustainable luminescent smart e-tags

Author information +
History +

Abstract

Counterfeiting remains a significant threat, causing economic and safety concerns. Addressing this, authentication technologies have gained traction. With the rise of the Internet of Things, authentication is crucial. Photonic Physical Unclonable Functions (PUFs) offer unique identifiers. We present low-cost and sustainable e-tags that may be printed virtually on any surface for authentication due to the bespoke texturization of sustainable inks of surface-modified carbon dots. A single e-tag provides randomized phosphorescence (or afterglow) patterns, which provide multiple layers of safety by exploiting different patterning, excitation energies, and temporal characteristics. A comprehensive case study employing photonic challenge-response pairs, involving a sample size of up to 29 emission spectra in combination with 102 photographs taken with a smartphone, displays a low authentication probability of error (<10−11), which supports the potential of our combined approach toward the development of more robust photonic PUF systems.

Keywords

carbon dots / Internet of things / light emitting diode / physical unclonable functions

Cite this article

Download citation ▾
Lília M. S. Dias, Lianshe Fu, R. F. P. Pereira, Albano N. Carneiro Neto, V. de Zea Bermudez, P. S. André, Rute A. S. Ferreira. Evolving photonic authentication with sustainable luminescent smart e-tags. FlexMat, 2024, 1(2): 116‒126 https://doi.org/10.1002/flm2.16

References

[1]
Global Trade in Fakes: A Worrying Threat, in Illicit Trade, OECD Publishing, Paris 2021.
[2]
J. F. C. B Ramalho, S. F. H. Correia, L. Fu, L. M. S. Dias, P. Adão, P. Mateus, R. A. S. Ferreira, P. S. André, npj Flex Electron 2020, 4, 11.
[3]
C. Mesaritakis, M. Akriotou, A. Kapsalis, E. Grivas, C. Chaintoutis, T. Nikas, D. Syvridis, Sci Rep 2018, 8, 9653.
CrossRef Google scholar
[4]
R. Pappu, B. Recht, J. Taylor, N. Gershenfeld, Science 2002, 297, 2026.
CrossRef Google scholar
[5]
B. T. Bosworth, I. A. Atakhodjaev, M. R. Kossey, B. C. Grubel, D. S. Vresilovic, J. R. Stroud, N. MacFarlane, J. Villalba, N. Dehak, A. B. Cooper, M. A. Foster, A. C. Foster, APL Photonics 2020, 5, 010803.
[6]
L. M. S Dias, T. F. S. Silvério, R. A. SáFerreira, P. S. de Brito André, IET Optoelectron 2022, 16, 174.
[7]
S. Liu, L. Yan, Q. Li, J. Huang, L. Tao, B. Zhou, Chem Eng J 2020, 397, 125451.
CrossRef Google scholar
[8]
J. Wang, Q. Zhang, R. Chen, J. Li, J. Wang, G. Hu, M. Cui, X. Jiang, B. Song, Y. He, Nano Today 2021, 41, 101324.
CrossRef Google scholar
[9]
T. Silvério, L. M. S. Dias, J. F. C. B. Ramalho, S. F. H. Correia, L. Fu, R. A. S. Ferreira, P. S. André, AIP Adv 2022, 12, 085316.
[10]
Y. Liu, F. Han, F. Li, Y. Zhao, M. Chen, Z. Xu, X. Zheng, H. Hu, J. Yao, T. Guo, W. Lin, Y. Zheng, B. You, P. Liu, Y. Li, L. Qian, Nat Commun 2019, 10, 2409.
[11]
J. Yang, M. Feng, J. Wang, Z. Zhao, R. Xu, Z. Chen, K. Zhang, A. Khan, Y. Han, F. Song, W. Huang, Adv Mater 2023, 35, 2306003.
[12]
L. M. S Dias, J. F. C. B. Ramalho, T. Silvério, L. Fu, R. A. S Ferreira, P. S. Andre, IEEE Access 2022, 10, 24433.
CrossRef Google scholar
[13]
H. Chen, H. Hu, B. Sun, H. H. Zhao, Y. Qie, Z. Luo, Y. Pan, W. Chen, L. Lin, K. Yang, T. Guo, F. Li, ACS Appl Mater Interfaces 2023, 15, 2104.
CrossRef Google scholar
[14]
E. Ponkratova, E. Ageev, P. Trifonov, P. Kustov, M. Sandomirskii, M. Zhukov, A. Larin, I. Mukhin, T. Belmonte, A. Nominé, S. Bruyère, D. Zuev, Adv Funct Mater 2022, 32, 2205859.
[15]
M. Akriotou, A. Fragkos, D. Syvridis, in Physics and Simulation of Optoelectronic Devices XXVIII (Eds: M. Osiński, Y Arakawa, B Witzigmann), Vol. 20, SPIE 2020.
[16]
A. Di Falco, V. Mazzone, A. Cruz, A. Fratalocchi, Nat Commun 2019, 10, 5827.
[17]
A. Fratalocchi, A. Fleming, C. Conti, A. Di Falco, Nanophotonics 2020, 10, 457.
CrossRef Google scholar
[18]
A. Al-Meer, S. Al-Kuwari, ACM Comput Surv 2023, 55, 314.
[19]
L. Ðorđević, F. Arcudi, M. Cacioppo, M. Prato, Nat Nanotechnol 2022, 17, 112.130.
CrossRef Google scholar
[20]
L. Wang, Y. Wang, T. Xu, H. Liao, C. Yao, Y. Liu, Z. Li, Z. Chen, D. Pan, L. Sun, M. Wu, Nat Commun 2014, 5, 5357.
[21]
F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z. Tan, A. Chen, M. Jin, S. Yang, Nat Commun 2018, 9, 2249.
[22]
Y. Ding, X. Wang, M. Tang, H. Qiu, Adv Sci 2022, 9, 2103833.
[23]
J. Fayos, J Solid State Chem 1999, 148, 278.
CrossRef Google scholar
[24]
S. F. H Correia, L. Fu, L. M. S. Dias, R. F. P. Pereira, V. de Zea Bermudez, P. S. André, R. A. S. Ferreira, Nanoscale Adv 2023, 5, 3428.
CrossRef Google scholar
[25]
B. N. Meera, J. Ramakrishna, J Non-Cryst Solids 1993, 159, 1.
[26]
Q. Feng, Z. Xie, M. Zheng, Chem Eng J 2021, 420, 127647.
CrossRef Google scholar
[27]
W. Li, W. Zhou, Z. Zhou, H. Zhang, X. Zhang, J. Zhuang, Y. Liu, B. Lei, C. Hu, Angew Chem 2019, 131, 7356.
CrossRef Google scholar
[28]
B. S. D Onishi, A. N. Carneiro Neto, R. Bortoletto-Santos, V. R. Mastelaro, L. D. Carlos, R. A. S. Ferreira, S. J. L. Ribeiro, Nanoscale 2024, 16, 6286.

RIGHTS & PERMISSIONS

2024 2024 The Authors. FlexMat published by John Wiley & Sons Australia, Ltd on behalf of Nanjing University of Posts & Telecommunications.
PDF

Accesses

Citations

Detail

Sections
Recommended

/