Reconfigurable intelligent surface-aided secret key generation using an autoencoder and K-means quantization

Zhenling LI , Panpan XU , Qiangqiang GAO , Chunguo LI , Weijie TAN

Front. Inform. Technol. Electron. Eng ›› 2025, Vol. 26 ›› Issue (8) : 1486 -1500.

PDF (1187KB)
Front. Inform. Technol. Electron. Eng ›› 2025, Vol. 26 ›› Issue (8) : 1486 -1500. DOI: 10.1631/FITEE.2400799
Research Article

Reconfigurable intelligent surface-aided secret key generation using an autoencoder and K-means quantization

Author information +
History +
PDF (1187KB)

Abstract

In quasi-static wireless channel scenarios, the generation of physical layer keys faces the challenge of invariant spatial and temporal channel characteristics, resulting in a high key disagreement rate (KDR) and low key generation rate (KGR). To address these issues, we propose a novel reconfigurable intelligent surface (RIS)-aided secret key generation approach using an autoencoder and K-means quantization algorithm. The proposed method uses channel state information (CSI) for channel estimation and dynamically adjusts the reflection coefficients of the RIS to create a rapidly fluctuating channel. This strategy enables the extraction of dynamic channel parameters, thereby enhancing channel randomness. Additionally, by integrating the autoencoder with the K-means clustering quantization algorithm, the method efficiently extracts random bits from complex, ambiguous, and high-dimensional channel parameters, significantly reducing KDR. Simulations demonstrate that, under various signal-to-noise ratios (SNRs), the proposed method performs excellently in terms of KGR and KDR. Furthermore, the randomness of the generated keys is validated through the National Institute of Standards and Technology (NIST) test suite.

Keywords

Reconfigurable intelligent surface (RIS) / Physical layer key generation / Quantization / Autoencoder

Cite this article

Download citation ▾
Zhenling LI, Panpan XU, Qiangqiang GAO, Chunguo LI, Weijie TAN. Reconfigurable intelligent surface-aided secret key generation using an autoencoder and K-means quantization. Front. Inform. Technol. Electron. Eng, 2025, 26(8): 1486-1500 DOI:10.1631/FITEE.2400799

登录浏览全文

4963

注册一个新账户 忘记密码

References

RIGHTS & PERMISSIONS

Zhejiang University Press

AI Summary AI Mindmap
PDF (1187KB)

Supplementary files

FITEE-1486-25016-ZLL_suppl_1

FITEE-1486-25016-ZLL_suppl_2

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/