Recent advances inmultisensormultitarget tracking using random finite set

Kai DA , Tiancheng LI , Yongfeng ZHU , Hongqi FAN , Qiang FU

Front. Inform. Technol. Electron. Eng ›› 2021, Vol. 22 ›› Issue (1) : 5 -24.

PDF (2402KB)
Front. Inform. Technol. Electron. Eng ›› 2021, Vol. 22 ›› Issue (1) : 5 -24. DOI: 10.1631/FITEE.2000266
Review
Review

Recent advances inmultisensormultitarget tracking using random finite set

Author information +
History +
PDF (2402KB)

Abstract

In this study, we provide an overview of recent advances in multisensor multitarget tracking based on the random finite set (RFS) approach. The fusion that plays a fundamental role in multisensor filtering is classified into data-level multitarget measurement fusion and estimate-level multitarget density fusion, which share and fuse local measurements and posterior densities between sensors, respectively. Important properties of each fusion rule including the optimality and sub-optimality are presented. In particular, two robust multitarget density-averaging approaches, arithmetic- and geometric-average fusion, are addressed in detail for various RFSs. Relevant research topics and remaining challenges are highlighted.

Keywords

Multitarget tracking / Multisensor fusion / Average fusion / Random finite set / Optimal fusion

Cite this article

Download citation ▾
Kai DA, Tiancheng LI, Yongfeng ZHU, Hongqi FAN, Qiang FU. Recent advances inmultisensormultitarget tracking using random finite set. Front. Inform. Technol. Electron. Eng, 2021, 22(1): 5-24 DOI:10.1631/FITEE.2000266

登录浏览全文

4963

注册一个新账户 忘记密码

References

RIGHTS & PERMISSIONS

Zhejiang University Press

AI Summary AI Mindmap
PDF (2402KB)

Supplementary files

FITEE-0005-20002-KD_suppl_1

FITEE-0005-20002-KD_suppl_2

1114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/