Cross-lingual implicit discourse relation recognitionwith co-training

Yao-jie LU , Mu XU , Chang-xing WU , De-yi XIONG , Hong-ji WANG , Jin-song SU

Front. Inform. Technol. Electron. Eng ›› 2018, Vol. 19 ›› Issue (5) : 651 -661.

PDF (491KB)
Front. Inform. Technol. Electron. Eng ›› 2018, Vol. 19 ›› Issue (5) : 651 -661. DOI: 10.1631/FITEE.1601865
Orginal Article
Orginal Article

Cross-lingual implicit discourse relation recognitionwith co-training

Author information +
History +
PDF (491KB)

Abstract

A lack of labeled corpora obstructs the research progress on implicit discourse relation recognition (DRR) for Chinese, while there are some available discourse corpora in other languages, such as English. In this paper, we propose a cross-lingual implicit DRR framework that exploits an available English corpus for the Chinese DRR task. We use machine translation to generate Chinese instances from a labeled English discourse corpus. In this way, each instance has two independent views: Chinese and English views. Then we train two classifiers in Chinese and English in a co-training way, which exploits unlabeled Chinese data to implement better implicit DRR for Chinese. Experimental results demonstrate the effectiveness of our method.

Keywords

Cross-lingual / Implicit discourse relation recognition / Co-training

Cite this article

Download citation ▾
Yao-jie LU, Mu XU, Chang-xing WU, De-yi XIONG, Hong-ji WANG, Jin-song SU. Cross-lingual implicit discourse relation recognitionwith co-training. Front. Inform. Technol. Electron. Eng, 2018, 19(5): 651-661 DOI:10.1631/FITEE.1601865

登录浏览全文

4963

注册一个新账户 忘记密码

References

RIGHTS & PERMISSIONS

Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (491KB)

Supplementary files

FITEE-0651-18005-YJL_suppl_1

FITEE-0651-18005-YJL_suppl_2

1623

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/